Rule Exclusion Mechanism in Evolutionary Fuzzy Systems

Detalhes bibliográficos
Autor(a) principal: Diadelmo, Marcus Vinícius Freitas
Data de Publicação: 2022
Outros Autores: Vargas e Pinto, Arthur Caio, Rezende, Tamires Martins
Tipo de documento: Artigo
Idioma: por
Título da fonte: Revista de Engenharia Química e Química
Texto Completo: https://periodicos.ufv.br/jcec/article/view/14884
Resumo: This paper aims to propose a rule exclusion system and, consequently, the model simplification in evolutionary fuzzy systems. Such simplification has some benefits, being highlighted, for example, the task of labelling the rules by an expert in unsupervised systems and the explanation of the rules obtained. For the execution of the work, it was considered an algorithm present in the literature, ALMNo, with the addition of the proposed exclusion mechanism. The proposed mechanism uses the distance between the centers of the membership functions of the rules, normalized by the standard deviation of a sliding window with the last 10 data analyzed. The normalization is intended to detect a change in the context of the data, and once it is detected, provides greater generalizability to the system. This is due to the fact that data belonging to another region of space generates a larger standard deviation. The results were analyzed by comparing the original ALMNo algorithm with that without the exclusion mechanism. Numerical results show that the proposed mechanism is promising in terms of reducing the number of rules and maintaining a competitive level of accuracy. Furthermore, test results indicate that setting the necessary parameters is not decisive for the success of the algorithm.
id UFV-4_52c656e0b3bc9ed03494d5efe8c487cd
oai_identifier_str oai:ojs.periodicos.ufv.br:article/14884
network_acronym_str UFV-4
network_name_str Revista de Engenharia Química e Química
repository_id_str
spelling Rule Exclusion Mechanism in Evolutionary Fuzzy SystemsMecanismo de Exclusão de Regras em Sistemas Fuzzy EvolutivosEvolutionary Fuzzy SystemsFuzzy RulesRule ExclusionSistemas Fuzzy EvolutivosRegras FuzzyExclusão de regrasThis paper aims to propose a rule exclusion system and, consequently, the model simplification in evolutionary fuzzy systems. Such simplification has some benefits, being highlighted, for example, the task of labelling the rules by an expert in unsupervised systems and the explanation of the rules obtained. For the execution of the work, it was considered an algorithm present in the literature, ALMNo, with the addition of the proposed exclusion mechanism. The proposed mechanism uses the distance between the centers of the membership functions of the rules, normalized by the standard deviation of a sliding window with the last 10 data analyzed. The normalization is intended to detect a change in the context of the data, and once it is detected, provides greater generalizability to the system. This is due to the fact that data belonging to another region of space generates a larger standard deviation. The results were analyzed by comparing the original ALMNo algorithm with that without the exclusion mechanism. Numerical results show that the proposed mechanism is promising in terms of reducing the number of rules and maintaining a competitive level of accuracy. Furthermore, test results indicate that setting the necessary parameters is not decisive for the success of the algorithm.O presente trabalho tem como objetivo propor um sistema de exclusão de regras e, consequentemente, a simplificação do modelo em sistemas fuzzy evolutivos. Tal simplificação tem alguns benefícios, podendo ser destacado, por exemplo, o trabalho de rotulação das regras por um especialista em sistemas não supervisionados e a explicação das regras obtidas. Para execução do trabalho foi considerado um algoritmo presente na literatura, ALMNo, com a adição do mecanismo de exclusão proposto. O mecanismo proposto utiliza a distância entre os centros das funções de pertinência das regras, normalizado pelo desvio padrão de uma janela deslizante com os últimos 10 dados analisados. A normalização visa detectar uma mudança no contexto dos dados, e, uma vez detectada a mudança, proporcionar uma maior generalização ao sistema. Isso se deve ao fato de que dados pertencentes a outra região do espaço gera um desvio padrão maior. Os resultados foram analisados comparando o algoritmo ALMNo original com o algoritmo ALMNo adicionado o mecanismo de exclusão. Resultados numéricos mostram que o mecanismo proposto é promissor, uma vez que reduziu o número de regras e manteve um nível competitivo de acurácia. Além disso, resultados de testes indicam que a definição dos parâmetros necessários não é algo decisivo para o sucesso do algoritmo.Universidade Federal de Viçosa - UFV2022-11-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://periodicos.ufv.br/jcec/article/view/1488410.18540/jcecvl8iss8pp14884-01eThe Journal of Engineering and Exact Sciences; Vol. 8 No. 8 (2022); 14884-01eThe Journal of Engineering and Exact Sciences; Vol. 8 Núm. 8 (2022); 14884-01eThe Journal of Engineering and Exact Sciences; v. 8 n. 8 (2022); 14884-01e2527-1075reponame:Revista de Engenharia Química e Químicainstname:Universidade Federal de Viçosa (UFV)instacron:UFVporhttps://periodicos.ufv.br/jcec/article/view/14884/7567Copyright (c) 2022 The Journal of Engineering and Exact Scienceshttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessDiadelmo, Marcus Vinícius FreitasVargas e Pinto, Arthur CaioRezende, Tamires Martins2022-11-08T19:41:15Zoai:ojs.periodicos.ufv.br:article/14884Revistahttp://www.seer.ufv.br/seer/rbeq2/index.php/req2/indexONGhttps://periodicos.ufv.br/jcec/oaijcec.journal@ufv.br||req2@ufv.br2446-94162446-9416opendoar:2022-11-08T19:41:15Revista de Engenharia Química e Química - Universidade Federal de Viçosa (UFV)false
dc.title.none.fl_str_mv Rule Exclusion Mechanism in Evolutionary Fuzzy Systems
Mecanismo de Exclusão de Regras em Sistemas Fuzzy Evolutivos
title Rule Exclusion Mechanism in Evolutionary Fuzzy Systems
spellingShingle Rule Exclusion Mechanism in Evolutionary Fuzzy Systems
Diadelmo, Marcus Vinícius Freitas
Evolutionary Fuzzy Systems
Fuzzy Rules
Rule Exclusion
Sistemas Fuzzy Evolutivos
Regras Fuzzy
Exclusão de regras
title_short Rule Exclusion Mechanism in Evolutionary Fuzzy Systems
title_full Rule Exclusion Mechanism in Evolutionary Fuzzy Systems
title_fullStr Rule Exclusion Mechanism in Evolutionary Fuzzy Systems
title_full_unstemmed Rule Exclusion Mechanism in Evolutionary Fuzzy Systems
title_sort Rule Exclusion Mechanism in Evolutionary Fuzzy Systems
author Diadelmo, Marcus Vinícius Freitas
author_facet Diadelmo, Marcus Vinícius Freitas
Vargas e Pinto, Arthur Caio
Rezende, Tamires Martins
author_role author
author2 Vargas e Pinto, Arthur Caio
Rezende, Tamires Martins
author2_role author
author
dc.contributor.author.fl_str_mv Diadelmo, Marcus Vinícius Freitas
Vargas e Pinto, Arthur Caio
Rezende, Tamires Martins
dc.subject.por.fl_str_mv Evolutionary Fuzzy Systems
Fuzzy Rules
Rule Exclusion
Sistemas Fuzzy Evolutivos
Regras Fuzzy
Exclusão de regras
topic Evolutionary Fuzzy Systems
Fuzzy Rules
Rule Exclusion
Sistemas Fuzzy Evolutivos
Regras Fuzzy
Exclusão de regras
description This paper aims to propose a rule exclusion system and, consequently, the model simplification in evolutionary fuzzy systems. Such simplification has some benefits, being highlighted, for example, the task of labelling the rules by an expert in unsupervised systems and the explanation of the rules obtained. For the execution of the work, it was considered an algorithm present in the literature, ALMNo, with the addition of the proposed exclusion mechanism. The proposed mechanism uses the distance between the centers of the membership functions of the rules, normalized by the standard deviation of a sliding window with the last 10 data analyzed. The normalization is intended to detect a change in the context of the data, and once it is detected, provides greater generalizability to the system. This is due to the fact that data belonging to another region of space generates a larger standard deviation. The results were analyzed by comparing the original ALMNo algorithm with that without the exclusion mechanism. Numerical results show that the proposed mechanism is promising in terms of reducing the number of rules and maintaining a competitive level of accuracy. Furthermore, test results indicate that setting the necessary parameters is not decisive for the success of the algorithm.
publishDate 2022
dc.date.none.fl_str_mv 2022-11-03
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://periodicos.ufv.br/jcec/article/view/14884
10.18540/jcecvl8iss8pp14884-01e
url https://periodicos.ufv.br/jcec/article/view/14884
identifier_str_mv 10.18540/jcecvl8iss8pp14884-01e
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://periodicos.ufv.br/jcec/article/view/14884/7567
dc.rights.driver.fl_str_mv Copyright (c) 2022 The Journal of Engineering and Exact Sciences
https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2022 The Journal of Engineering and Exact Sciences
https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Viçosa - UFV
publisher.none.fl_str_mv Universidade Federal de Viçosa - UFV
dc.source.none.fl_str_mv The Journal of Engineering and Exact Sciences; Vol. 8 No. 8 (2022); 14884-01e
The Journal of Engineering and Exact Sciences; Vol. 8 Núm. 8 (2022); 14884-01e
The Journal of Engineering and Exact Sciences; v. 8 n. 8 (2022); 14884-01e
2527-1075
reponame:Revista de Engenharia Química e Química
instname:Universidade Federal de Viçosa (UFV)
instacron:UFV
instname_str Universidade Federal de Viçosa (UFV)
instacron_str UFV
institution UFV
reponame_str Revista de Engenharia Química e Química
collection Revista de Engenharia Química e Química
repository.name.fl_str_mv Revista de Engenharia Química e Química - Universidade Federal de Viçosa (UFV)
repository.mail.fl_str_mv jcec.journal@ufv.br||req2@ufv.br
_version_ 1800211190755885056