Monitoring of ball bearings via vibration analysis and envelope technique for predictive maintenance purposes

Detalhes bibliográficos
Autor(a) principal: Pessoa, Adiel
Data de Publicação: 2023
Outros Autores: Büchner, Paulo Cezar
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Revista de Engenharia Química e Química
Texto Completo: https://periodicos.ufv.br/jcec/article/view/17434
Resumo: Bearings are one of the primary and most crucial machine components in the industry and transportation systems, since they are critical components in these systems, their failure can lead to various losses and significant damages. Despite the advanced stages of development and manufacturing processes, approximately 90% of unplanned machine shutdowns are attributed to bearing failures. These failures can occur in various ways, making it essential to monitor the bearing's deterioration to replace it before it reaches a critical condition for the industry, machine or vehicle's operation. To monitor ball bearing failures, a range of vibration monitoring techniques are employed, encompassing envelope analysis, kurtosis, bi-spectrum, and wavelet analysis. In this case, frequency graphs based in the signals of the bearings inner race will be generated, through a new signal acquisition system, using of envelope analysis by frequency filters, Hilbert Transform and Fast Fourier Transform (FFT). However, detecting and analyzing these signals can be challenging due to weak signals and noise masking vibration patterns. Although current techniques are effective, they have limitations, such as requiring expert analysis, difficulty in detecting early-stage faults, and inability to differentiate between different fault types. Current techniques, such as envelope and wavelet analysis, are effective but have limitations. New technologies and methods, are being explored to improve fault detection and classification, providing early detection of faults and differentiation between different fault types, ultimately reducing the impact of ball bearing failures on machines and industries. This paper proposed to present a study of the ball bearing failure through vibration analysis from early-stage to advanced-stage of damage for predictive maintenance purposes, applying the envelope and FFT together with programming, to enable the identification of defects in the bearing, especially in the inner race, through a signal acquisition system that can explain the presence of the defect through frequency graphs. Thus, obtaining results that show the presence of defects in three different bearings, with gradual defect magnitudes, differentiating these data from an ideal bearing. The next step we will intend to explore the new technologies like machine learning and artificial intelligence, to also analyze all variants of defects in a bearing.
id UFV-4_74bef5fb20eb3d2393bc14ba137dfef8
oai_identifier_str oai:ojs.periodicos.ufv.br:article/17434
network_acronym_str UFV-4
network_name_str Revista de Engenharia Química e Química
repository_id_str
spelling Monitoring of ball bearings via vibration analysis and envelope technique for predictive maintenance purposesMonitoreo de pistas internas de rodamientos de bolas mediante análisis de vibraciones y técnica de envolvente para fines de mantenimiento predictivoSurveillance des bagues intérieures des roulements à billes via l'analyse vibratoire et la technique de l'enveloppe à des fins de maintenance prédictiveMonitoramento de rolamentos de esferas por meio de análise de vibração e técnica de envelope para fins de manutenção preditivaBall bearingsRail failureEnvelopePredictive maintenanceInner raceRolamento de esferasFalha ferroviáriaEnvelopeManutenção preditivapista internaBearings are one of the primary and most crucial machine components in the industry and transportation systems, since they are critical components in these systems, their failure can lead to various losses and significant damages. Despite the advanced stages of development and manufacturing processes, approximately 90% of unplanned machine shutdowns are attributed to bearing failures. These failures can occur in various ways, making it essential to monitor the bearing's deterioration to replace it before it reaches a critical condition for the industry, machine or vehicle's operation. To monitor ball bearing failures, a range of vibration monitoring techniques are employed, encompassing envelope analysis, kurtosis, bi-spectrum, and wavelet analysis. In this case, frequency graphs based in the signals of the bearings inner race will be generated, through a new signal acquisition system, using of envelope analysis by frequency filters, Hilbert Transform and Fast Fourier Transform (FFT). However, detecting and analyzing these signals can be challenging due to weak signals and noise masking vibration patterns. Although current techniques are effective, they have limitations, such as requiring expert analysis, difficulty in detecting early-stage faults, and inability to differentiate between different fault types. Current techniques, such as envelope and wavelet analysis, are effective but have limitations. New technologies and methods, are being explored to improve fault detection and classification, providing early detection of faults and differentiation between different fault types, ultimately reducing the impact of ball bearing failures on machines and industries. This paper proposed to present a study of the ball bearing failure through vibration analysis from early-stage to advanced-stage of damage for predictive maintenance purposes, applying the envelope and FFT together with programming, to enable the identification of defects in the bearing, especially in the inner race, through a signal acquisition system that can explain the presence of the defect through frequency graphs. Thus, obtaining results that show the presence of defects in three different bearings, with gradual defect magnitudes, differentiating these data from an ideal bearing. The next step we will intend to explore the new technologies like machine learning and artificial intelligence, to also analyze all variants of defects in a bearing.Os rolamentos são um dos principais e mais cruciais componentes de máquinas na indústria e nos sistemas de transporte, por serem componentes críticos nesses sistemas, sua falha pode levar a diversas perdas e danos significativos. Apesar dos estágios avançados de desenvolvimento e processos de fabricação, aproximadamente 90% das paradas não planejadas de máquinas são atribuídas a falhas em rolamentos. Essas falhas podem ocorrer de diversas formas, sendo imprescindível monitorar a deterioração do rolamento para substituí-lo antes que ele atinja uma condição crítica para o funcionamento da indústria, da máquina ou do veículo. Para monitorar falhas em rolamentos de esferas, uma série de técnicas de monitoramento de vibração são empregadas, abrangendo análise de envelope, curtose, bi-espectro e análise wavelet. Neste caso, serão gerados gráficos de frequência baseados nos sinais da pista interna do rolamento, através de um novo sistema de aquisição de sinais, utilizando análise de envoltória por filtros de frequência, Transformada de Hilbert e Transformada Rápida de Fourier (FFT). No entanto, detectar e analisar esses sinais pode ser um desafio devido aos sinais fracos e aos padrões de vibração que mascaram o ruído. Embora as técnicas atuais sejam eficazes, elas têm limitações, como a necessidade de análise especializada, dificuldade na detecção de falhas em estágio inicial e incapacidade de diferenciar entre diferentes tipos de falhas. As técnicas atuais, como análise de envelope e wavelet, são eficazes, mas apresentam limitações. Novas tecnologias e métodos estão sendo explorados para melhorar a detecção e classificação de falhas, proporcionando detecção precoce de falhas e diferenciação entre diferentes tipos de falhas, reduzindo, em última análise, o impacto das falhas de rolamentos de esferas em máquinas e indústrias. Este artigo se propôs a apresentar um estudo da falha em rolamentos de esferas através da análise de vibração desde o estágio inicial até o estágio avançado de dano para fins de manutenção preditiva, aplicando a envoltória e a FFT em conjunto com a programação, para possibilitar a identificação de defeitos no rolamento, especialmente na pista interna, através de um sistema de aquisição de sinais que pode explicar a presença do defeito através de gráficos de frequência. Obtendo assim resultados que mostram a presença de defeitos em três rolamentos diferentes, com magnitudes graduais de defeitos, diferenciando esses dados de um rolamento ideal. O próximo passo pretendemos explorar as novas tecnologias como aprendizado de máquina e inteligência artificial, para também analisar todas as variantes de defeitos em um rolamento.Universidade Federal de Viçosa - UFV2023-11-26info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://periodicos.ufv.br/jcec/article/view/1743410.18540/jcecvl9iss9pp17434-01eThe Journal of Engineering and Exact Sciences; Vol. 9 No. 9 (2023); 17434-01eThe Journal of Engineering and Exact Sciences; Vol. 9 Núm. 9 (2023); 17434-01eThe Journal of Engineering and Exact Sciences; v. 9 n. 9 (2023); 17434-01e2527-1075reponame:Revista de Engenharia Química e Químicainstname:Universidade Federal de Viçosa (UFV)instacron:UFVenghttps://periodicos.ufv.br/jcec/article/view/17434/8806Copyright (c) 2023 The Journal of Engineering and Exact Scienceshttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessPessoa, AdielBüchner, Paulo Cezar2023-12-08T19:38:58Zoai:ojs.periodicos.ufv.br:article/17434Revistahttp://www.seer.ufv.br/seer/rbeq2/index.php/req2/indexONGhttps://periodicos.ufv.br/jcec/oaijcec.journal@ufv.br||req2@ufv.br2446-94162446-9416opendoar:2023-12-08T19:38:58Revista de Engenharia Química e Química - Universidade Federal de Viçosa (UFV)false
dc.title.none.fl_str_mv Monitoring of ball bearings via vibration analysis and envelope technique for predictive maintenance purposes
Monitoreo de pistas internas de rodamientos de bolas mediante análisis de vibraciones y técnica de envolvente para fines de mantenimiento predictivo
Surveillance des bagues intérieures des roulements à billes via l'analyse vibratoire et la technique de l'enveloppe à des fins de maintenance prédictive
Monitoramento de rolamentos de esferas por meio de análise de vibração e técnica de envelope para fins de manutenção preditiva
title Monitoring of ball bearings via vibration analysis and envelope technique for predictive maintenance purposes
spellingShingle Monitoring of ball bearings via vibration analysis and envelope technique for predictive maintenance purposes
Pessoa, Adiel
Ball bearings
Rail failure
Envelope
Predictive maintenance
Inner race
Rolamento de esferas
Falha ferroviária
Envelope
Manutenção preditiva
pista interna
title_short Monitoring of ball bearings via vibration analysis and envelope technique for predictive maintenance purposes
title_full Monitoring of ball bearings via vibration analysis and envelope technique for predictive maintenance purposes
title_fullStr Monitoring of ball bearings via vibration analysis and envelope technique for predictive maintenance purposes
title_full_unstemmed Monitoring of ball bearings via vibration analysis and envelope technique for predictive maintenance purposes
title_sort Monitoring of ball bearings via vibration analysis and envelope technique for predictive maintenance purposes
author Pessoa, Adiel
author_facet Pessoa, Adiel
Büchner, Paulo Cezar
author_role author
author2 Büchner, Paulo Cezar
author2_role author
dc.contributor.author.fl_str_mv Pessoa, Adiel
Büchner, Paulo Cezar
dc.subject.por.fl_str_mv Ball bearings
Rail failure
Envelope
Predictive maintenance
Inner race
Rolamento de esferas
Falha ferroviária
Envelope
Manutenção preditiva
pista interna
topic Ball bearings
Rail failure
Envelope
Predictive maintenance
Inner race
Rolamento de esferas
Falha ferroviária
Envelope
Manutenção preditiva
pista interna
description Bearings are one of the primary and most crucial machine components in the industry and transportation systems, since they are critical components in these systems, their failure can lead to various losses and significant damages. Despite the advanced stages of development and manufacturing processes, approximately 90% of unplanned machine shutdowns are attributed to bearing failures. These failures can occur in various ways, making it essential to monitor the bearing's deterioration to replace it before it reaches a critical condition for the industry, machine or vehicle's operation. To monitor ball bearing failures, a range of vibration monitoring techniques are employed, encompassing envelope analysis, kurtosis, bi-spectrum, and wavelet analysis. In this case, frequency graphs based in the signals of the bearings inner race will be generated, through a new signal acquisition system, using of envelope analysis by frequency filters, Hilbert Transform and Fast Fourier Transform (FFT). However, detecting and analyzing these signals can be challenging due to weak signals and noise masking vibration patterns. Although current techniques are effective, they have limitations, such as requiring expert analysis, difficulty in detecting early-stage faults, and inability to differentiate between different fault types. Current techniques, such as envelope and wavelet analysis, are effective but have limitations. New technologies and methods, are being explored to improve fault detection and classification, providing early detection of faults and differentiation between different fault types, ultimately reducing the impact of ball bearing failures on machines and industries. This paper proposed to present a study of the ball bearing failure through vibration analysis from early-stage to advanced-stage of damage for predictive maintenance purposes, applying the envelope and FFT together with programming, to enable the identification of defects in the bearing, especially in the inner race, through a signal acquisition system that can explain the presence of the defect through frequency graphs. Thus, obtaining results that show the presence of defects in three different bearings, with gradual defect magnitudes, differentiating these data from an ideal bearing. The next step we will intend to explore the new technologies like machine learning and artificial intelligence, to also analyze all variants of defects in a bearing.
publishDate 2023
dc.date.none.fl_str_mv 2023-11-26
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://periodicos.ufv.br/jcec/article/view/17434
10.18540/jcecvl9iss9pp17434-01e
url https://periodicos.ufv.br/jcec/article/view/17434
identifier_str_mv 10.18540/jcecvl9iss9pp17434-01e
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://periodicos.ufv.br/jcec/article/view/17434/8806
dc.rights.driver.fl_str_mv Copyright (c) 2023 The Journal of Engineering and Exact Sciences
https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2023 The Journal of Engineering and Exact Sciences
https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Viçosa - UFV
publisher.none.fl_str_mv Universidade Federal de Viçosa - UFV
dc.source.none.fl_str_mv The Journal of Engineering and Exact Sciences; Vol. 9 No. 9 (2023); 17434-01e
The Journal of Engineering and Exact Sciences; Vol. 9 Núm. 9 (2023); 17434-01e
The Journal of Engineering and Exact Sciences; v. 9 n. 9 (2023); 17434-01e
2527-1075
reponame:Revista de Engenharia Química e Química
instname:Universidade Federal de Viçosa (UFV)
instacron:UFV
instname_str Universidade Federal de Viçosa (UFV)
instacron_str UFV
institution UFV
reponame_str Revista de Engenharia Química e Química
collection Revista de Engenharia Química e Química
repository.name.fl_str_mv Revista de Engenharia Química e Química - Universidade Federal de Viçosa (UFV)
repository.mail.fl_str_mv jcec.journal@ufv.br||req2@ufv.br
_version_ 1800211191292755968