A comparative approach for the optimal design of steel structures using biogeography-based optimization (BBO) algorithm and genetic algorithm (GA)
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Revista de Engenharia Química e Química |
Texto Completo: | https://periodicos.ufv.br/jcec/article/view/17792 |
Resumo: | Structural optimization is one of the key concerns of civil engineering designers, but from a mathematical point of view, this optimization problem is highly complex and complicated due to a large number of non-linear design constraints and the iterative procedure of structural analysis. Introducing optimization algorithms such as biogeography-Based Optimization (BBO) and genetic algorithms (GA) into applications can help the user to optimize the cost of the structure to be adopted more quickly and with fewer errors in the preliminary phase of the design study. The aim of this research is to carry out a comparative approach to structure weight minimization using biogeography-Based Optimization (BBO) algorithm and genetic algorithms (GA), examining the influence of the number of populations and the number of iterations in the final results. In this study, both algorithms gave reliable results, but a comparison of the results obtained by the two methods reveals that the biogeography-Based Optimization algorithm (BBO) can be successfully used for the optimization of steel structures while ensuring verification of the strength, serviceability and stability criteria defined by Eurocode 3 (Union, 2006), as it has certain advantages in detecting the global minimum over genetic algorithms (GA). It is capable of finding solutions that are lighter, stiffer and have lower deflection than the original designs. |
id |
UFV-4_816f7acffe8730aa4a81ac8a6c6a8ea9 |
---|---|
oai_identifier_str |
oai:ojs.periodicos.ufv.br:article/17792 |
network_acronym_str |
UFV-4 |
network_name_str |
Revista de Engenharia Química e Química |
repository_id_str |
|
spelling |
A comparative approach for the optimal design of steel structures using biogeography-based optimization (BBO) algorithm and genetic algorithm (GA)Un enfoque comparativo para el diseño óptimo de estructuras de acero utilizando el algoritmo de optimización basado en la biogeografía (BBO) y el algoritmo genético (GA)Steel StructureOptimizationGenetic algorithmExpert systemsBBO algorithmMulticriteria optimizationEurocode 3Estructuras de aceroOptimizaciónAlgoritmo BBOAlgoritmo GASistemas expertosOptimización multicriterioEurocódigo 3Structural optimization is one of the key concerns of civil engineering designers, but from a mathematical point of view, this optimization problem is highly complex and complicated due to a large number of non-linear design constraints and the iterative procedure of structural analysis. Introducing optimization algorithms such as biogeography-Based Optimization (BBO) and genetic algorithms (GA) into applications can help the user to optimize the cost of the structure to be adopted more quickly and with fewer errors in the preliminary phase of the design study. The aim of this research is to carry out a comparative approach to structure weight minimization using biogeography-Based Optimization (BBO) algorithm and genetic algorithms (GA), examining the influence of the number of populations and the number of iterations in the final results. In this study, both algorithms gave reliable results, but a comparison of the results obtained by the two methods reveals that the biogeography-Based Optimization algorithm (BBO) can be successfully used for the optimization of steel structures while ensuring verification of the strength, serviceability and stability criteria defined by Eurocode 3 (Union, 2006), as it has certain advantages in detecting the global minimum over genetic algorithms (GA). It is capable of finding solutions that are lighter, stiffer and have lower deflection than the original designs.La optimización estructural es una de las principales preocupaciones de los diseñadores de ingeniería civil, pero desde un punto de vista matemático, este problema de optimización es muy complejo y complicado debido a un gran número de restricciones de diseño no lineales y al procedimiento iterativo del análisis estructural. La introducción de algoritmos de optimización como la optimización basada en la biogeografía (BBO) y los algoritmos genéticos (GA) en las aplicaciones puede ayudar al usuario a optimizar el coste de la estructura a adoptar más rápidamente y con menos errores en la fase preliminar del estudio de diseño. El objetivo de esta investigación es realizar una aproximación comparativa a la minimización del peso de la estructura utilizando el algoritmo de Optimización Basada en Biogeografía (BBO) y algoritmos genéticos (GA), examinando la influencia del número de poblaciones y el número de iteraciones en los resultados finales. En este estudio, ambos algoritmos arrojaron resultados fiables, pero la comparación de los resultados obtenidos por los dos métodos revela que el algoritmo de Optimización Basada en la Biogeografía (BBO) puede utilizarse con éxito para la optimización de estructuras de acero, garantizando al mismo tiempo la verificación de los criterios de resistencia, capacidad de servicio y estabilidad definidos por el Eurocódigo 3 (Unión, 2006), ya que presenta ciertas ventajas en la detección del mínimo global con respecto a los algoritmos genéticos (AG). Es capaz de encontrar soluciones más ligeras, más rígidas y con menor deflexión que los diseños originales.Universidade Federal de Viçosa - UFV2023-12-24info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://periodicos.ufv.br/jcec/article/view/1779210.18540/jcecvl9iss12pp17792The Journal of Engineering and Exact Sciences; Vol. 9 No. 12 (2023); 17792The Journal of Engineering and Exact Sciences; Vol. 9 Núm. 12 (2023); 17792The Journal of Engineering and Exact Sciences; v. 9 n. 12 (2023); 177922527-1075reponame:Revista de Engenharia Química e Químicainstname:Universidade Federal de Viçosa (UFV)instacron:UFVenghttps://periodicos.ufv.br/jcec/article/view/17792/9392Copyright (c) 2023 The Journal of Engineering and Exact Scienceshttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessAmamra, LaidBensoula, MohamedBahar , Sadek2024-03-26T17:17:46Zoai:ojs.periodicos.ufv.br:article/17792Revistahttp://www.seer.ufv.br/seer/rbeq2/index.php/req2/indexONGhttps://periodicos.ufv.br/jcec/oaijcec.journal@ufv.br||req2@ufv.br2446-94162446-9416opendoar:2024-03-26T17:17:46Revista de Engenharia Química e Química - Universidade Federal de Viçosa (UFV)false |
dc.title.none.fl_str_mv |
A comparative approach for the optimal design of steel structures using biogeography-based optimization (BBO) algorithm and genetic algorithm (GA) Un enfoque comparativo para el diseño óptimo de estructuras de acero utilizando el algoritmo de optimización basado en la biogeografía (BBO) y el algoritmo genético (GA) |
title |
A comparative approach for the optimal design of steel structures using biogeography-based optimization (BBO) algorithm and genetic algorithm (GA) |
spellingShingle |
A comparative approach for the optimal design of steel structures using biogeography-based optimization (BBO) algorithm and genetic algorithm (GA) Amamra, Laid Steel Structure Optimization Genetic algorithm Expert systems BBO algorithm Multicriteria optimization Eurocode 3 Estructuras de acero Optimización Algoritmo BBO Algoritmo GA Sistemas expertos Optimización multicriterio Eurocódigo 3 |
title_short |
A comparative approach for the optimal design of steel structures using biogeography-based optimization (BBO) algorithm and genetic algorithm (GA) |
title_full |
A comparative approach for the optimal design of steel structures using biogeography-based optimization (BBO) algorithm and genetic algorithm (GA) |
title_fullStr |
A comparative approach for the optimal design of steel structures using biogeography-based optimization (BBO) algorithm and genetic algorithm (GA) |
title_full_unstemmed |
A comparative approach for the optimal design of steel structures using biogeography-based optimization (BBO) algorithm and genetic algorithm (GA) |
title_sort |
A comparative approach for the optimal design of steel structures using biogeography-based optimization (BBO) algorithm and genetic algorithm (GA) |
author |
Amamra, Laid |
author_facet |
Amamra, Laid Bensoula, Mohamed Bahar , Sadek |
author_role |
author |
author2 |
Bensoula, Mohamed Bahar , Sadek |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Amamra, Laid Bensoula, Mohamed Bahar , Sadek |
dc.subject.por.fl_str_mv |
Steel Structure Optimization Genetic algorithm Expert systems BBO algorithm Multicriteria optimization Eurocode 3 Estructuras de acero Optimización Algoritmo BBO Algoritmo GA Sistemas expertos Optimización multicriterio Eurocódigo 3 |
topic |
Steel Structure Optimization Genetic algorithm Expert systems BBO algorithm Multicriteria optimization Eurocode 3 Estructuras de acero Optimización Algoritmo BBO Algoritmo GA Sistemas expertos Optimización multicriterio Eurocódigo 3 |
description |
Structural optimization is one of the key concerns of civil engineering designers, but from a mathematical point of view, this optimization problem is highly complex and complicated due to a large number of non-linear design constraints and the iterative procedure of structural analysis. Introducing optimization algorithms such as biogeography-Based Optimization (BBO) and genetic algorithms (GA) into applications can help the user to optimize the cost of the structure to be adopted more quickly and with fewer errors in the preliminary phase of the design study. The aim of this research is to carry out a comparative approach to structure weight minimization using biogeography-Based Optimization (BBO) algorithm and genetic algorithms (GA), examining the influence of the number of populations and the number of iterations in the final results. In this study, both algorithms gave reliable results, but a comparison of the results obtained by the two methods reveals that the biogeography-Based Optimization algorithm (BBO) can be successfully used for the optimization of steel structures while ensuring verification of the strength, serviceability and stability criteria defined by Eurocode 3 (Union, 2006), as it has certain advantages in detecting the global minimum over genetic algorithms (GA). It is capable of finding solutions that are lighter, stiffer and have lower deflection than the original designs. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-12-24 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://periodicos.ufv.br/jcec/article/view/17792 10.18540/jcecvl9iss12pp17792 |
url |
https://periodicos.ufv.br/jcec/article/view/17792 |
identifier_str_mv |
10.18540/jcecvl9iss12pp17792 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://periodicos.ufv.br/jcec/article/view/17792/9392 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2023 The Journal of Engineering and Exact Sciences https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2023 The Journal of Engineering and Exact Sciences https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Viçosa - UFV |
publisher.none.fl_str_mv |
Universidade Federal de Viçosa - UFV |
dc.source.none.fl_str_mv |
The Journal of Engineering and Exact Sciences; Vol. 9 No. 12 (2023); 17792 The Journal of Engineering and Exact Sciences; Vol. 9 Núm. 12 (2023); 17792 The Journal of Engineering and Exact Sciences; v. 9 n. 12 (2023); 17792 2527-1075 reponame:Revista de Engenharia Química e Química instname:Universidade Federal de Viçosa (UFV) instacron:UFV |
instname_str |
Universidade Federal de Viçosa (UFV) |
instacron_str |
UFV |
institution |
UFV |
reponame_str |
Revista de Engenharia Química e Química |
collection |
Revista de Engenharia Química e Química |
repository.name.fl_str_mv |
Revista de Engenharia Química e Química - Universidade Federal de Viçosa (UFV) |
repository.mail.fl_str_mv |
jcec.journal@ufv.br||req2@ufv.br |
_version_ |
1800211186097061888 |