Thermal and Fluid Flow Performance Analysis of Tubular Microchannel Heat Sinks with Inward Protrusions and Nanofluids

Detalhes bibliográficos
Autor(a) principal: Fetuga, Ibrahim Ademola
Data de Publicação: 2022
Outros Autores: Olakoyejo, Olabode Thomas, Siqueira, Antônio Marcos de Oliveira, Gbegudu, Joshua Kolawole, Adeyemi, Ebenezer Aderibigbe
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Revista de Engenharia Química e Química
Texto Completo: https://periodicos.ufv.br/jcec/article/view/14233
Resumo: In this work, the application of protrusions and nanofluids to improve the performance of tubular-microchannel heat sink (MCHS) is proposed and investigated computationally. The three-dimensional Navier-Stokes and energy equations were solved numerically using the finite volume method incorporated into the ANSYS (Fluent) software package. The effects of different types of nanofluid (Al2O3, CuO, ZnO in pure water), the volume fraction of the nanoparticles (0% to 4%)  and height of the protrusion ( 2um-6um) on microchannel heat sinks were investigated under the steady-state condition and Reynold numbers (400-2000) with constant heat flux of 9 x 106 W/m2. It was revealed that thermal performance improved as protrusion height increased. At Re=2 000  , for Al2O3 nanofluid (NAN) with a volume fraction ( of 4% and a protrusion height (H)  of  2um to 6um yielded a thermal performance value of 1.59, 1.68, 1.77, 1.86, and 1.96 times that of MCHS without the protrusion, respectively. In addition, at a volume fraction of 4%, protrusion height of 6um  and Reynolds number of 800, the Al2O3, CuO, and ZnO nanofluids yielded a thermal performance value of 1.79, 1.08, and 1.07 times that of pure water, respectively. Furthermore, at a Reynolds number of 400 and a volume fraction of 4%, the Al2O3–water nanofluid reduced the maximum temperature of the MCHS wall by 4% , whereas - and -nanofluids decreased the MCHS wall maximum temperature by 0.5% and 0.48% when compared to pure water, respectively. However, for all the cases of volume fraction (1% to 4%), there was an increase trend in the value of thermal performance for the Reynolds number range of 400 to 800 , and decrease with the Reynolds number range of 800 to 2 000.
id UFV-4_b22b5ace98fcc688f20c66125d0d8a7a
oai_identifier_str oai:ojs.periodicos.ufv.br:article/14233
network_acronym_str UFV-4
network_name_str Revista de Engenharia Química e Química
repository_id_str
spelling Thermal and Fluid Flow Performance Analysis of Tubular Microchannel Heat Sinks with Inward Protrusions and NanofluidsAnálise de desempenho de fluxo térmico e de fluido de dissipadores de calor tubulares de microcanais com saliências internas e nanofluidosSimulation. Protrusion. Nanofluids. Microchannel Heat Sink. Thermal Performance.Simulação. Saliência. Nanofluidos. Dissipador de calor microcanal. Performance térmica.In this work, the application of protrusions and nanofluids to improve the performance of tubular-microchannel heat sink (MCHS) is proposed and investigated computationally. The three-dimensional Navier-Stokes and energy equations were solved numerically using the finite volume method incorporated into the ANSYS (Fluent) software package. The effects of different types of nanofluid (Al2O3, CuO, ZnO in pure water), the volume fraction of the nanoparticles (0% to 4%)  and height of the protrusion ( 2um-6um) on microchannel heat sinks were investigated under the steady-state condition and Reynold numbers (400-2000) with constant heat flux of 9 x 106 W/m2. It was revealed that thermal performance improved as protrusion height increased. At Re=2 000  , for Al2O3 nanofluid (NAN) with a volume fraction ( of 4% and a protrusion height (H)  of  2um to 6um yielded a thermal performance value of 1.59, 1.68, 1.77, 1.86, and 1.96 times that of MCHS without the protrusion, respectively. In addition, at a volume fraction of 4%, protrusion height of 6um  and Reynolds number of 800, the Al2O3, CuO, and ZnO nanofluids yielded a thermal performance value of 1.79, 1.08, and 1.07 times that of pure water, respectively. Furthermore, at a Reynolds number of 400 and a volume fraction of 4%, the Al2O3–water nanofluid reduced the maximum temperature of the MCHS wall by 4% , whereas - and -nanofluids decreased the MCHS wall maximum temperature by 0.5% and 0.48% when compared to pure water, respectively. However, for all the cases of volume fraction (1% to 4%), there was an increase trend in the value of thermal performance for the Reynolds number range of 400 to 800 , and decrease with the Reynolds number range of 800 to 2 000.Neste trabalho, a aplicação de saliências e nanofluidos para melhorar o desempenho do dissipador de calor tubular-microchannel (MCHS) é proposta e investigada computacionalmente. As equações tridimensionais de Navier-Stokes e energia foram resolvidas numericamente usando o método de volume finito incorporado ao pacote de software ANSYS (Fluent). Os efeitos de diferentes tipos de nanofluido (Al2O3, CuO, ZnO em água pura), a fração de volume das nanopartículas (0% a 4%) e a altura da saliência ( 2um-6um) em dissipadores de calor microcanal foram investigados sob a condição de estado estável e números de Reynold (400-2000) com fluxo de calor constante de 9 x 106 W/m2. Foi revelado que o desempenho térmico melhorou à medida que a altura da saliência aumentava. Foi revelado que o desempenho térmico melhorou à medida que a altura da saliência aumentava. Em Re=2 000 , para Nanofluida Al2O3 (NAN) com uma fração de volume ( de 4% e uma altura de saliência (H) de 2um a 6um rendeu um valor de desempenho térmico de 1,59, 1,68, 1,77, 1,86 e 1,96 vezes o de MCHS sem as prolagens, respectivamente. Além disso, com uma fração de volume de 4%, altura de saliência de 6um e reynolds número de 800, os nanofluidos Al2O3, CuO e ZnO produziram um valor de desempenho térmico de 1,79, 1,08 e 1,07 vezes o de água pura, respectivamente. Além disso, com um número reynolds de 400 e uma fração de volume de 4%, o nanofluido al2O3-água reduziu a temperatura máxima da parede mchs em 4%, enquanto - e -nanofluidas reduziram a temperatura máxima da parede mchs em 0,5% e 0,48% quando comparada à água pura, respectivamente. No entanto, para todos os casos de fração de volume (1% a 4%), houve um aumento no valor do desempenho térmico para a faixa de número reynolds de 400 a 800 , e diminuição com a faixa de número reynolds de 800 a 2 000.Universidade Federal de Viçosa - UFV2022-04-22info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtigo, Manuscrito, Eventosapplication/pdfhttps://periodicos.ufv.br/jcec/article/view/1423310.18540/jcecvl8iss5pp14233-01eThe Journal of Engineering and Exact Sciences; Vol. 8 No. 5 (2022); 14233-01eThe Journal of Engineering and Exact Sciences; Vol. 8 Núm. 5 (2022); 14233-01eThe Journal of Engineering and Exact Sciences; v. 8 n. 5 (2022); 14233-01e2527-1075reponame:Revista de Engenharia Química e Químicainstname:Universidade Federal de Viçosa (UFV)instacron:UFVenghttps://periodicos.ufv.br/jcec/article/view/14233/7311Copyright (c) 2022 The Journal of Engineering and Exact Scienceshttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessFetuga, Ibrahim AdemolaOlakoyejo, Olabode ThomasSiqueira, Antônio Marcos de OliveiraGbegudu, Joshua KolawoleAdeyemi, Ebenezer Aderibigbe2022-08-11T17:47:50Zoai:ojs.periodicos.ufv.br:article/14233Revistahttp://www.seer.ufv.br/seer/rbeq2/index.php/req2/indexONGhttps://periodicos.ufv.br/jcec/oaijcec.journal@ufv.br||req2@ufv.br2446-94162446-9416opendoar:2022-08-11T17:47:50Revista de Engenharia Química e Química - Universidade Federal de Viçosa (UFV)false
dc.title.none.fl_str_mv Thermal and Fluid Flow Performance Analysis of Tubular Microchannel Heat Sinks with Inward Protrusions and Nanofluids
Análise de desempenho de fluxo térmico e de fluido de dissipadores de calor tubulares de microcanais com saliências internas e nanofluidos
title Thermal and Fluid Flow Performance Analysis of Tubular Microchannel Heat Sinks with Inward Protrusions and Nanofluids
spellingShingle Thermal and Fluid Flow Performance Analysis of Tubular Microchannel Heat Sinks with Inward Protrusions and Nanofluids
Fetuga, Ibrahim Ademola
Simulation. Protrusion. Nanofluids. Microchannel Heat Sink. Thermal Performance.
Simulação. Saliência. Nanofluidos. Dissipador de calor microcanal. Performance térmica.
title_short Thermal and Fluid Flow Performance Analysis of Tubular Microchannel Heat Sinks with Inward Protrusions and Nanofluids
title_full Thermal and Fluid Flow Performance Analysis of Tubular Microchannel Heat Sinks with Inward Protrusions and Nanofluids
title_fullStr Thermal and Fluid Flow Performance Analysis of Tubular Microchannel Heat Sinks with Inward Protrusions and Nanofluids
title_full_unstemmed Thermal and Fluid Flow Performance Analysis of Tubular Microchannel Heat Sinks with Inward Protrusions and Nanofluids
title_sort Thermal and Fluid Flow Performance Analysis of Tubular Microchannel Heat Sinks with Inward Protrusions and Nanofluids
author Fetuga, Ibrahim Ademola
author_facet Fetuga, Ibrahim Ademola
Olakoyejo, Olabode Thomas
Siqueira, Antônio Marcos de Oliveira
Gbegudu, Joshua Kolawole
Adeyemi, Ebenezer Aderibigbe
author_role author
author2 Olakoyejo, Olabode Thomas
Siqueira, Antônio Marcos de Oliveira
Gbegudu, Joshua Kolawole
Adeyemi, Ebenezer Aderibigbe
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Fetuga, Ibrahim Ademola
Olakoyejo, Olabode Thomas
Siqueira, Antônio Marcos de Oliveira
Gbegudu, Joshua Kolawole
Adeyemi, Ebenezer Aderibigbe
dc.subject.por.fl_str_mv Simulation. Protrusion. Nanofluids. Microchannel Heat Sink. Thermal Performance.
Simulação. Saliência. Nanofluidos. Dissipador de calor microcanal. Performance térmica.
topic Simulation. Protrusion. Nanofluids. Microchannel Heat Sink. Thermal Performance.
Simulação. Saliência. Nanofluidos. Dissipador de calor microcanal. Performance térmica.
description In this work, the application of protrusions and nanofluids to improve the performance of tubular-microchannel heat sink (MCHS) is proposed and investigated computationally. The three-dimensional Navier-Stokes and energy equations were solved numerically using the finite volume method incorporated into the ANSYS (Fluent) software package. The effects of different types of nanofluid (Al2O3, CuO, ZnO in pure water), the volume fraction of the nanoparticles (0% to 4%)  and height of the protrusion ( 2um-6um) on microchannel heat sinks were investigated under the steady-state condition and Reynold numbers (400-2000) with constant heat flux of 9 x 106 W/m2. It was revealed that thermal performance improved as protrusion height increased. At Re=2 000  , for Al2O3 nanofluid (NAN) with a volume fraction ( of 4% and a protrusion height (H)  of  2um to 6um yielded a thermal performance value of 1.59, 1.68, 1.77, 1.86, and 1.96 times that of MCHS without the protrusion, respectively. In addition, at a volume fraction of 4%, protrusion height of 6um  and Reynolds number of 800, the Al2O3, CuO, and ZnO nanofluids yielded a thermal performance value of 1.79, 1.08, and 1.07 times that of pure water, respectively. Furthermore, at a Reynolds number of 400 and a volume fraction of 4%, the Al2O3–water nanofluid reduced the maximum temperature of the MCHS wall by 4% , whereas - and -nanofluids decreased the MCHS wall maximum temperature by 0.5% and 0.48% when compared to pure water, respectively. However, for all the cases of volume fraction (1% to 4%), there was an increase trend in the value of thermal performance for the Reynolds number range of 400 to 800 , and decrease with the Reynolds number range of 800 to 2 000.
publishDate 2022
dc.date.none.fl_str_mv 2022-04-22
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Artigo, Manuscrito, Eventos
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://periodicos.ufv.br/jcec/article/view/14233
10.18540/jcecvl8iss5pp14233-01e
url https://periodicos.ufv.br/jcec/article/view/14233
identifier_str_mv 10.18540/jcecvl8iss5pp14233-01e
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://periodicos.ufv.br/jcec/article/view/14233/7311
dc.rights.driver.fl_str_mv Copyright (c) 2022 The Journal of Engineering and Exact Sciences
https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2022 The Journal of Engineering and Exact Sciences
https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Viçosa - UFV
publisher.none.fl_str_mv Universidade Federal de Viçosa - UFV
dc.source.none.fl_str_mv The Journal of Engineering and Exact Sciences; Vol. 8 No. 5 (2022); 14233-01e
The Journal of Engineering and Exact Sciences; Vol. 8 Núm. 5 (2022); 14233-01e
The Journal of Engineering and Exact Sciences; v. 8 n. 5 (2022); 14233-01e
2527-1075
reponame:Revista de Engenharia Química e Química
instname:Universidade Federal de Viçosa (UFV)
instacron:UFV
instname_str Universidade Federal de Viçosa (UFV)
instacron_str UFV
institution UFV
reponame_str Revista de Engenharia Química e Química
collection Revista de Engenharia Química e Química
repository.name.fl_str_mv Revista de Engenharia Química e Química - Universidade Federal de Viçosa (UFV)
repository.mail.fl_str_mv jcec.journal@ufv.br||req2@ufv.br
_version_ 1800211190611181568