Algorithms for Non-Relativistic Quantum Integral Equation
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | The Journal of Engineering and Exact Sciences |
DOI: | 10.18540/jcecvl7iss3pp12699-01-19e |
Texto Completo: | https://periodicos.ufv.br/jcec/article/view/12699 |
Resumo: | In low energy scattering in Non-Relativistic Quantum Mechanics, the Schödinger equation in integral form is used. In quantum scattering theory the wave self-function is divided into two parts, one for the free wave associated with the particle incident to a scattering center, and the emerging wave that comes out after the particle collides with the scattering center. Assuming that the scattering center contains a position-dependent potential, the usual solution of the integral equation for the scattered wave is obtained via the Born approximation. Assuming that the scattering center contains a position-dependent potential, the usual solution of the integral equation for the scattered wave is obtained via the Born approximation. The methods used here are arbitrary kernels and the Neumann-Born series. The result, with the help of computational codes, shows that both techniques are good compared to the traditional method. The advantage is that they are finite solutions, which does not require Podolsky-type regularization. |
id |
UFV-6_49748826f5fbd179241150fa682189aa |
---|---|
oai_identifier_str |
oai:ojs.periodicos.ufv.br:article/12699 |
network_acronym_str |
UFV-6 |
network_name_str |
The Journal of Engineering and Exact Sciences |
spelling |
Algorithms for Non-Relativistic Quantum Integral EquationAlgoritmos para Equação Integral Quântico Não RelativísticoQuantum scattering. Fredholm. Neumann-Born. Computational modeling.Espalhamento quântico. Fredholm. Neumann-Born. Modelagem computacional.In low energy scattering in Non-Relativistic Quantum Mechanics, the Schödinger equation in integral form is used. In quantum scattering theory the wave self-function is divided into two parts, one for the free wave associated with the particle incident to a scattering center, and the emerging wave that comes out after the particle collides with the scattering center. Assuming that the scattering center contains a position-dependent potential, the usual solution of the integral equation for the scattered wave is obtained via the Born approximation. Assuming that the scattering center contains a position-dependent potential, the usual solution of the integral equation for the scattered wave is obtained via the Born approximation. The methods used here are arbitrary kernels and the Neumann-Born series. The result, with the help of computational codes, shows that both techniques are good compared to the traditional method. The advantage is that they are finite solutions, which does not require Podolsky-type regularization.No espalhamento a baixa energia na Mecânica Quântica não Relativística, usa-se aequação de Schödinger na forma integral. Na teoria do espalhamento quântico a autofunção de onda é dividida em duas partes, uma para a onda livre associada a partícula incidente àum centro espalhador, e a onda emergente que sai depois da partícula colidir com o centroespalhador. Admitindo que o centro espalhador contém um potencial dependente da posição, a solução usual da equação integral para a onda espalhada é obtida via aproximação de Born. Neste artigo apresenta-se duas técnicas alternativas para solução da equação integral contendo um potencial eletrostático. Os métodos usados aqui, são Kerneis arbitrários e a série de Neumann-Born. O resultado, com a ajuda de códigos computacionais, mostra que as duas técnicas são boas comparadas com o método tradicional. A vantagem é que são soluções finitas, que não requer regularização do tipo Podolsky.Universidade Federal de Viçosa - UFV2021-07-26info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://periodicos.ufv.br/jcec/article/view/1269910.18540/jcecvl7iss3pp12699-01-19eThe Journal of Engineering and Exact Sciences; Vol. 7 No. 3 (2021); 12699-01-19eThe Journal of Engineering and Exact Sciences; Vol. 7 Núm. 3 (2021); 12699-01-19eThe Journal of Engineering and Exact Sciences; v. 7 n. 3 (2021); 12699-01-19e2527-1075reponame:The Journal of Engineering and Exact Sciencesinstname:Universidade Federal de Viçosa (UFV)instacron:UFVenghttps://periodicos.ufv.br/jcec/article/view/12699/6776Copyright (c) 2021 The Journal of Engineering and Exact Scienceshttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessSales, Jorge Henrique de Oliveira Girotto, Pedro Henrique Sales2021-08-16T18:50:11Zoai:ojs.periodicos.ufv.br:article/12699Revistahttp://www.seer.ufv.br/seer/rbeq2/index.php/req2/oai2527-10752527-1075opendoar:2021-08-16T18:50:11The Journal of Engineering and Exact Sciences - Universidade Federal de Viçosa (UFV)false |
dc.title.none.fl_str_mv |
Algorithms for Non-Relativistic Quantum Integral Equation Algoritmos para Equação Integral Quântico Não Relativístico |
title |
Algorithms for Non-Relativistic Quantum Integral Equation |
spellingShingle |
Algorithms for Non-Relativistic Quantum Integral Equation Algorithms for Non-Relativistic Quantum Integral Equation Sales, Jorge Henrique de Oliveira Quantum scattering. Fredholm. Neumann-Born. Computational modeling. Espalhamento quântico. Fredholm. Neumann-Born. Modelagem computacional. Sales, Jorge Henrique de Oliveira Quantum scattering. Fredholm. Neumann-Born. Computational modeling. Espalhamento quântico. Fredholm. Neumann-Born. Modelagem computacional. |
title_short |
Algorithms for Non-Relativistic Quantum Integral Equation |
title_full |
Algorithms for Non-Relativistic Quantum Integral Equation |
title_fullStr |
Algorithms for Non-Relativistic Quantum Integral Equation Algorithms for Non-Relativistic Quantum Integral Equation |
title_full_unstemmed |
Algorithms for Non-Relativistic Quantum Integral Equation Algorithms for Non-Relativistic Quantum Integral Equation |
title_sort |
Algorithms for Non-Relativistic Quantum Integral Equation |
author |
Sales, Jorge Henrique de Oliveira |
author_facet |
Sales, Jorge Henrique de Oliveira Sales, Jorge Henrique de Oliveira Girotto, Pedro Henrique Sales Girotto, Pedro Henrique Sales |
author_role |
author |
author2 |
Girotto, Pedro Henrique Sales |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Sales, Jorge Henrique de Oliveira Girotto, Pedro Henrique Sales |
dc.subject.por.fl_str_mv |
Quantum scattering. Fredholm. Neumann-Born. Computational modeling. Espalhamento quântico. Fredholm. Neumann-Born. Modelagem computacional. |
topic |
Quantum scattering. Fredholm. Neumann-Born. Computational modeling. Espalhamento quântico. Fredholm. Neumann-Born. Modelagem computacional. |
description |
In low energy scattering in Non-Relativistic Quantum Mechanics, the Schödinger equation in integral form is used. In quantum scattering theory the wave self-function is divided into two parts, one for the free wave associated with the particle incident to a scattering center, and the emerging wave that comes out after the particle collides with the scattering center. Assuming that the scattering center contains a position-dependent potential, the usual solution of the integral equation for the scattered wave is obtained via the Born approximation. Assuming that the scattering center contains a position-dependent potential, the usual solution of the integral equation for the scattered wave is obtained via the Born approximation. The methods used here are arbitrary kernels and the Neumann-Born series. The result, with the help of computational codes, shows that both techniques are good compared to the traditional method. The advantage is that they are finite solutions, which does not require Podolsky-type regularization. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-07-26 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://periodicos.ufv.br/jcec/article/view/12699 10.18540/jcecvl7iss3pp12699-01-19e |
url |
https://periodicos.ufv.br/jcec/article/view/12699 |
identifier_str_mv |
10.18540/jcecvl7iss3pp12699-01-19e |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://periodicos.ufv.br/jcec/article/view/12699/6776 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2021 The Journal of Engineering and Exact Sciences https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2021 The Journal of Engineering and Exact Sciences https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Viçosa - UFV |
publisher.none.fl_str_mv |
Universidade Federal de Viçosa - UFV |
dc.source.none.fl_str_mv |
The Journal of Engineering and Exact Sciences; Vol. 7 No. 3 (2021); 12699-01-19e The Journal of Engineering and Exact Sciences; Vol. 7 Núm. 3 (2021); 12699-01-19e The Journal of Engineering and Exact Sciences; v. 7 n. 3 (2021); 12699-01-19e 2527-1075 reponame:The Journal of Engineering and Exact Sciences instname:Universidade Federal de Viçosa (UFV) instacron:UFV |
instname_str |
Universidade Federal de Viçosa (UFV) |
instacron_str |
UFV |
institution |
UFV |
reponame_str |
The Journal of Engineering and Exact Sciences |
collection |
The Journal of Engineering and Exact Sciences |
repository.name.fl_str_mv |
The Journal of Engineering and Exact Sciences - Universidade Federal de Viçosa (UFV) |
repository.mail.fl_str_mv |
|
_version_ |
1822180726742712320 |
dc.identifier.doi.none.fl_str_mv |
10.18540/jcecvl7iss3pp12699-01-19e |