Abelian Group on the Binomial Coefficients in Combinatorial Geometric Series

Detalhes bibliográficos
Autor(a) principal: Annamalai, Chinnaraji
Data de Publicação: 2022
Outros Autores: Siqueira, Antonio Marcos de Oliveira
Tipo de documento: Artigo
Idioma: eng
Título da fonte: The Journal of Engineering and Exact Sciences
Texto Completo: https://periodicos.ufv.br/jcec/article/view/14799
Resumo: This paper discusses an abelian group, also called a commutative group, under addition of the binomial coefficients of combinatorial geometric series. The combinatorial geometric series is derived from the multiple summations of geometric series The coefficient for each term in combinatorial geometric series refers to a binomial coefficient. This idea can enable the scientific researchers to solve the real life problems.
id UFV-6_7a0d7a45f45a862c955178c85b80f541
oai_identifier_str oai:ojs.periodicos.ufv.br:article/14799
network_acronym_str UFV-6
network_name_str The Journal of Engineering and Exact Sciences
repository_id_str
spelling Abelian Group on the Binomial Coefficients in Combinatorial Geometric SeriesAbelian Group on the Binomial Coefficients in Combinatorial Geometric Seriescomputation, combinatorics, binomial coefficient, abelian groupcomputation, combinatorics, binomial coefficient, abelian groupThis paper discusses an abelian group, also called a commutative group, under addition of the binomial coefficients of combinatorial geometric series. The combinatorial geometric series is derived from the multiple summations of geometric series The coefficient for each term in combinatorial geometric series refers to a binomial coefficient. This idea can enable the scientific researchers to solve the real life problems.This paper discusses an abelian group, also called a commutative group, under addition of the binomial coefficients of combinatorial geometric series. The combinatorial geometric series is derived from the multiple summations of geometric series The coefficient for each term in combinatorial geometric series refers to a binomial coefficient. This idea can enable the scientific researchers to solve the real life problems.Universidade Federal de Viçosa - UFV2022-10-24info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtigo, Manuscrito, Eventosapplication/pdfhttps://periodicos.ufv.br/jcec/article/view/1479910.18540/jcecvl8iss10pp14799-01iThe Journal of Engineering and Exact Sciences; Vol. 8 No. 10 (2022); 14799-01iThe Journal of Engineering and Exact Sciences; Vol. 8 Núm. 10 (2022); 14799-01iThe Journal of Engineering and Exact Sciences; v. 8 n. 10 (2022); 14799-01i2527-1075reponame:The Journal of Engineering and Exact Sciencesinstname:Universidade Federal de Viçosa (UFV)instacron:UFVenghttps://periodicos.ufv.br/jcec/article/view/14799/7525Copyright (c) 2022 The Journal of Engineering and Exact Scienceshttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessAnnamalai, ChinnarajiSiqueira, Antonio Marcos de Oliveira2022-12-21T14:46:10Zoai:ojs.periodicos.ufv.br:article/14799Revistahttp://www.seer.ufv.br/seer/rbeq2/index.php/req2/oai2527-10752527-1075opendoar:2022-12-21T14:46:10The Journal of Engineering and Exact Sciences - Universidade Federal de Viçosa (UFV)false
dc.title.none.fl_str_mv Abelian Group on the Binomial Coefficients in Combinatorial Geometric Series
Abelian Group on the Binomial Coefficients in Combinatorial Geometric Series
title Abelian Group on the Binomial Coefficients in Combinatorial Geometric Series
spellingShingle Abelian Group on the Binomial Coefficients in Combinatorial Geometric Series
Annamalai, Chinnaraji
computation, combinatorics, binomial coefficient, abelian group
computation, combinatorics, binomial coefficient, abelian group
title_short Abelian Group on the Binomial Coefficients in Combinatorial Geometric Series
title_full Abelian Group on the Binomial Coefficients in Combinatorial Geometric Series
title_fullStr Abelian Group on the Binomial Coefficients in Combinatorial Geometric Series
title_full_unstemmed Abelian Group on the Binomial Coefficients in Combinatorial Geometric Series
title_sort Abelian Group on the Binomial Coefficients in Combinatorial Geometric Series
author Annamalai, Chinnaraji
author_facet Annamalai, Chinnaraji
Siqueira, Antonio Marcos de Oliveira
author_role author
author2 Siqueira, Antonio Marcos de Oliveira
author2_role author
dc.contributor.author.fl_str_mv Annamalai, Chinnaraji
Siqueira, Antonio Marcos de Oliveira
dc.subject.por.fl_str_mv computation, combinatorics, binomial coefficient, abelian group
computation, combinatorics, binomial coefficient, abelian group
topic computation, combinatorics, binomial coefficient, abelian group
computation, combinatorics, binomial coefficient, abelian group
description This paper discusses an abelian group, also called a commutative group, under addition of the binomial coefficients of combinatorial geometric series. The combinatorial geometric series is derived from the multiple summations of geometric series The coefficient for each term in combinatorial geometric series refers to a binomial coefficient. This idea can enable the scientific researchers to solve the real life problems.
publishDate 2022
dc.date.none.fl_str_mv 2022-10-24
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Artigo, Manuscrito, Eventos
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://periodicos.ufv.br/jcec/article/view/14799
10.18540/jcecvl8iss10pp14799-01i
url https://periodicos.ufv.br/jcec/article/view/14799
identifier_str_mv 10.18540/jcecvl8iss10pp14799-01i
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://periodicos.ufv.br/jcec/article/view/14799/7525
dc.rights.driver.fl_str_mv Copyright (c) 2022 The Journal of Engineering and Exact Sciences
https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2022 The Journal of Engineering and Exact Sciences
https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Viçosa - UFV
publisher.none.fl_str_mv Universidade Federal de Viçosa - UFV
dc.source.none.fl_str_mv The Journal of Engineering and Exact Sciences; Vol. 8 No. 10 (2022); 14799-01i
The Journal of Engineering and Exact Sciences; Vol. 8 Núm. 10 (2022); 14799-01i
The Journal of Engineering and Exact Sciences; v. 8 n. 10 (2022); 14799-01i
2527-1075
reponame:The Journal of Engineering and Exact Sciences
instname:Universidade Federal de Viçosa (UFV)
instacron:UFV
instname_str Universidade Federal de Viçosa (UFV)
instacron_str UFV
institution UFV
reponame_str The Journal of Engineering and Exact Sciences
collection The Journal of Engineering and Exact Sciences
repository.name.fl_str_mv The Journal of Engineering and Exact Sciences - Universidade Federal de Viçosa (UFV)
repository.mail.fl_str_mv
_version_ 1808845247594102784