Abelian Group on the Binomial Coefficients in Combinatorial Geometric Series
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | The Journal of Engineering and Exact Sciences |
Texto Completo: | https://periodicos.ufv.br/jcec/article/view/14799 |
Resumo: | This paper discusses an abelian group, also called a commutative group, under addition of the binomial coefficients of combinatorial geometric series. The combinatorial geometric series is derived from the multiple summations of geometric series The coefficient for each term in combinatorial geometric series refers to a binomial coefficient. This idea can enable the scientific researchers to solve the real life problems. |
id |
UFV-6_7a0d7a45f45a862c955178c85b80f541 |
---|---|
oai_identifier_str |
oai:ojs.periodicos.ufv.br:article/14799 |
network_acronym_str |
UFV-6 |
network_name_str |
The Journal of Engineering and Exact Sciences |
repository_id_str |
|
spelling |
Abelian Group on the Binomial Coefficients in Combinatorial Geometric SeriesAbelian Group on the Binomial Coefficients in Combinatorial Geometric Seriescomputation, combinatorics, binomial coefficient, abelian groupcomputation, combinatorics, binomial coefficient, abelian groupThis paper discusses an abelian group, also called a commutative group, under addition of the binomial coefficients of combinatorial geometric series. The combinatorial geometric series is derived from the multiple summations of geometric series The coefficient for each term in combinatorial geometric series refers to a binomial coefficient. This idea can enable the scientific researchers to solve the real life problems.This paper discusses an abelian group, also called a commutative group, under addition of the binomial coefficients of combinatorial geometric series. The combinatorial geometric series is derived from the multiple summations of geometric series The coefficient for each term in combinatorial geometric series refers to a binomial coefficient. This idea can enable the scientific researchers to solve the real life problems.Universidade Federal de Viçosa - UFV2022-10-24info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtigo, Manuscrito, Eventosapplication/pdfhttps://periodicos.ufv.br/jcec/article/view/1479910.18540/jcecvl8iss10pp14799-01iThe Journal of Engineering and Exact Sciences; Vol. 8 No. 10 (2022); 14799-01iThe Journal of Engineering and Exact Sciences; Vol. 8 Núm. 10 (2022); 14799-01iThe Journal of Engineering and Exact Sciences; v. 8 n. 10 (2022); 14799-01i2527-1075reponame:The Journal of Engineering and Exact Sciencesinstname:Universidade Federal de Viçosa (UFV)instacron:UFVenghttps://periodicos.ufv.br/jcec/article/view/14799/7525Copyright (c) 2022 The Journal of Engineering and Exact Scienceshttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessAnnamalai, ChinnarajiSiqueira, Antonio Marcos de Oliveira2022-12-21T14:46:10Zoai:ojs.periodicos.ufv.br:article/14799Revistahttp://www.seer.ufv.br/seer/rbeq2/index.php/req2/oai2527-10752527-1075opendoar:2022-12-21T14:46:10The Journal of Engineering and Exact Sciences - Universidade Federal de Viçosa (UFV)false |
dc.title.none.fl_str_mv |
Abelian Group on the Binomial Coefficients in Combinatorial Geometric Series Abelian Group on the Binomial Coefficients in Combinatorial Geometric Series |
title |
Abelian Group on the Binomial Coefficients in Combinatorial Geometric Series |
spellingShingle |
Abelian Group on the Binomial Coefficients in Combinatorial Geometric Series Annamalai, Chinnaraji computation, combinatorics, binomial coefficient, abelian group computation, combinatorics, binomial coefficient, abelian group |
title_short |
Abelian Group on the Binomial Coefficients in Combinatorial Geometric Series |
title_full |
Abelian Group on the Binomial Coefficients in Combinatorial Geometric Series |
title_fullStr |
Abelian Group on the Binomial Coefficients in Combinatorial Geometric Series |
title_full_unstemmed |
Abelian Group on the Binomial Coefficients in Combinatorial Geometric Series |
title_sort |
Abelian Group on the Binomial Coefficients in Combinatorial Geometric Series |
author |
Annamalai, Chinnaraji |
author_facet |
Annamalai, Chinnaraji Siqueira, Antonio Marcos de Oliveira |
author_role |
author |
author2 |
Siqueira, Antonio Marcos de Oliveira |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Annamalai, Chinnaraji Siqueira, Antonio Marcos de Oliveira |
dc.subject.por.fl_str_mv |
computation, combinatorics, binomial coefficient, abelian group computation, combinatorics, binomial coefficient, abelian group |
topic |
computation, combinatorics, binomial coefficient, abelian group computation, combinatorics, binomial coefficient, abelian group |
description |
This paper discusses an abelian group, also called a commutative group, under addition of the binomial coefficients of combinatorial geometric series. The combinatorial geometric series is derived from the multiple summations of geometric series The coefficient for each term in combinatorial geometric series refers to a binomial coefficient. This idea can enable the scientific researchers to solve the real life problems. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-10-24 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Artigo, Manuscrito, Eventos |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://periodicos.ufv.br/jcec/article/view/14799 10.18540/jcecvl8iss10pp14799-01i |
url |
https://periodicos.ufv.br/jcec/article/view/14799 |
identifier_str_mv |
10.18540/jcecvl8iss10pp14799-01i |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://periodicos.ufv.br/jcec/article/view/14799/7525 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2022 The Journal of Engineering and Exact Sciences https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2022 The Journal of Engineering and Exact Sciences https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Viçosa - UFV |
publisher.none.fl_str_mv |
Universidade Federal de Viçosa - UFV |
dc.source.none.fl_str_mv |
The Journal of Engineering and Exact Sciences; Vol. 8 No. 10 (2022); 14799-01i The Journal of Engineering and Exact Sciences; Vol. 8 Núm. 10 (2022); 14799-01i The Journal of Engineering and Exact Sciences; v. 8 n. 10 (2022); 14799-01i 2527-1075 reponame:The Journal of Engineering and Exact Sciences instname:Universidade Federal de Viçosa (UFV) instacron:UFV |
instname_str |
Universidade Federal de Viçosa (UFV) |
instacron_str |
UFV |
institution |
UFV |
reponame_str |
The Journal of Engineering and Exact Sciences |
collection |
The Journal of Engineering and Exact Sciences |
repository.name.fl_str_mv |
The Journal of Engineering and Exact Sciences - Universidade Federal de Viçosa (UFV) |
repository.mail.fl_str_mv |
|
_version_ |
1808845247594102784 |