Vector Space on the Binomial Coefficients in Combinatorial Geometric Series

Detalhes bibliográficos
Autor(a) principal: Annamalai, Chinnaraji
Data de Publicação: 2023
Outros Autores: Siqueira, Antonio Marcos de Oliveira
Tipo de documento: Artigo
Idioma: eng
Título da fonte: The Journal of Engineering and Exact Sciences
Texto Completo: https://periodicos.ufv.br/jcec/article/view/15413
Resumo: A vector space is a group of objects that is closed under finite vector addition and scalar multiplication. This paper discusses a vector space under addition and multiplication of binomial coefficients defined in combinatorial geometric series. The combinatorial geometric series is a geometric series with binomial coefficients that is derived from the multiple summations of geometric series. This idea can enable the scientific researchers to solve the real world problems.
id UFV-6_d634270311e50ea2f00dfedfda359e9d
oai_identifier_str oai:ojs.periodicos.ufv.br:article/15413
network_acronym_str UFV-6
network_name_str The Journal of Engineering and Exact Sciences
repository_id_str
spelling Vector Space on the Binomial Coefficients in Combinatorial Geometric Seriescomputation, binomial coefficient, vector spaceA vector space is a group of objects that is closed under finite vector addition and scalar multiplication. This paper discusses a vector space under addition and multiplication of binomial coefficients defined in combinatorial geometric series. The combinatorial geometric series is a geometric series with binomial coefficients that is derived from the multiple summations of geometric series. This idea can enable the scientific researchers to solve the real world problems.Universidade Federal de Viçosa - UFV2023-03-14info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://periodicos.ufv.br/jcec/article/view/1541310.18540/jcecvl9iss6pp15413-01eThe Journal of Engineering and Exact Sciences; Vol. 9 No. 6 (2023); 15413-01eThe Journal of Engineering and Exact Sciences; Vol. 9 Núm. 6 (2023); 15413-01eThe Journal of Engineering and Exact Sciences; v. 9 n. 6 (2023); 15413-01e2527-1075reponame:The Journal of Engineering and Exact Sciencesinstname:Universidade Federal de Viçosa (UFV)instacron:UFVenghttps://periodicos.ufv.br/jcec/article/view/15413/7869Copyright (c) 2023 The Journal of Engineering and Exact Scienceshttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessAnnamalai, ChinnarajiSiqueira, Antonio Marcos de Oliveira2024-03-26T17:21:54Zoai:ojs.periodicos.ufv.br:article/15413Revistahttp://www.seer.ufv.br/seer/rbeq2/index.php/req2/oai2527-10752527-1075opendoar:2024-03-26T17:21:54The Journal of Engineering and Exact Sciences - Universidade Federal de Viçosa (UFV)false
dc.title.none.fl_str_mv Vector Space on the Binomial Coefficients in Combinatorial Geometric Series
title Vector Space on the Binomial Coefficients in Combinatorial Geometric Series
spellingShingle Vector Space on the Binomial Coefficients in Combinatorial Geometric Series
Annamalai, Chinnaraji
computation, binomial coefficient, vector space
title_short Vector Space on the Binomial Coefficients in Combinatorial Geometric Series
title_full Vector Space on the Binomial Coefficients in Combinatorial Geometric Series
title_fullStr Vector Space on the Binomial Coefficients in Combinatorial Geometric Series
title_full_unstemmed Vector Space on the Binomial Coefficients in Combinatorial Geometric Series
title_sort Vector Space on the Binomial Coefficients in Combinatorial Geometric Series
author Annamalai, Chinnaraji
author_facet Annamalai, Chinnaraji
Siqueira, Antonio Marcos de Oliveira
author_role author
author2 Siqueira, Antonio Marcos de Oliveira
author2_role author
dc.contributor.author.fl_str_mv Annamalai, Chinnaraji
Siqueira, Antonio Marcos de Oliveira
dc.subject.por.fl_str_mv computation, binomial coefficient, vector space
topic computation, binomial coefficient, vector space
description A vector space is a group of objects that is closed under finite vector addition and scalar multiplication. This paper discusses a vector space under addition and multiplication of binomial coefficients defined in combinatorial geometric series. The combinatorial geometric series is a geometric series with binomial coefficients that is derived from the multiple summations of geometric series. This idea can enable the scientific researchers to solve the real world problems.
publishDate 2023
dc.date.none.fl_str_mv 2023-03-14
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://periodicos.ufv.br/jcec/article/view/15413
10.18540/jcecvl9iss6pp15413-01e
url https://periodicos.ufv.br/jcec/article/view/15413
identifier_str_mv 10.18540/jcecvl9iss6pp15413-01e
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://periodicos.ufv.br/jcec/article/view/15413/7869
dc.rights.driver.fl_str_mv Copyright (c) 2023 The Journal of Engineering and Exact Sciences
https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2023 The Journal of Engineering and Exact Sciences
https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Viçosa - UFV
publisher.none.fl_str_mv Universidade Federal de Viçosa - UFV
dc.source.none.fl_str_mv The Journal of Engineering and Exact Sciences; Vol. 9 No. 6 (2023); 15413-01e
The Journal of Engineering and Exact Sciences; Vol. 9 Núm. 6 (2023); 15413-01e
The Journal of Engineering and Exact Sciences; v. 9 n. 6 (2023); 15413-01e
2527-1075
reponame:The Journal of Engineering and Exact Sciences
instname:Universidade Federal de Viçosa (UFV)
instacron:UFV
instname_str Universidade Federal de Viçosa (UFV)
instacron_str UFV
institution UFV
reponame_str The Journal of Engineering and Exact Sciences
collection The Journal of Engineering and Exact Sciences
repository.name.fl_str_mv The Journal of Engineering and Exact Sciences - Universidade Federal de Viçosa (UFV)
repository.mail.fl_str_mv
_version_ 1808845239762288640