Concrete reinforcement using composite fiberglass-based materials

Detalhes bibliográficos
Autor(a) principal: Lamine, Benzerga Ahmed
Data de Publicação: 2023
Outros Autores: Mohamed , Amieur, Rachid, Rabehi
Tipo de documento: Artigo
Idioma: eng
Título da fonte: The Journal of Engineering and Exact Sciences
Texto Completo: https://periodicos.ufv.br/jcec/article/view/16530
Resumo: Numerous existing structures, both old and new, have serious load-bearing capacity issues, which, in some cases, could endanger the safety of their users. In fact, we can say that these structures are nearing (or have already reached) the end of their useful lives, necessitating the need to find technical and financial solutions to renovate them as efficiently as possible. Many reinforced concrete bridges experience advanced states of deterioration as a result of extended exposure to hostile environments or even continuously rising use loads. Additionally, since the time of their construction, the technical standards used for the design and dimensioning of the old structures have had to be updated. As a result, some structural components that are still in use do not adhere to the standards for response to loads. In fact, it is frequently less expensive to reinforce the structural components of buildings than to perform a full reconstruction, especially now that, thanks to technological advancements, a variety of reinforcement techniques are still available and their costs are decreasing. One such technique involves externally reinforcing reinforced concrete elements with composite materials because of their superior strength-to-weight ratio and resistance to abrasion. Additionally, these composite materials can be utilized for column containment as well as shear and bending reinforcement for beams. This study aims to evaluate the impact of glass fibers on the general behavior of concrete, in particular on its resistance, deformations, and ductility, using FRP: Fiber-reinforced plastics are materials generally formed of two main and distinct elements: the fiber, "made from glass," and the matrix, "an epoxy resin that allows the transfer of loads between the fibers. The results of the specimens' cyclic loading tests attest to the significance of the contribution that concrete specimen confinement with FRP can make in terms of deformation and resistance to compression after the completion of static loading tests. However, these tests on the specimens' ability to withstand loading and unloading cycles reveal a very significant improvement.
id UFV-6_df33240a3c3289bf7dde7682fafde0da
oai_identifier_str oai:ojs.periodicos.ufv.br:article/16530
network_acronym_str UFV-6
network_name_str The Journal of Engineering and Exact Sciences
repository_id_str
spelling Concrete reinforcement using composite fiberglass-based materialsReforço de concreto com materiais compósitos à base de fibra de vidro Concrete reinforcementComposite materialsFiberglassDeformationCompressive strengthReforço de concretoMateriais compostosFibra de vidroDeformaçãoForça compressivaNumerous existing structures, both old and new, have serious load-bearing capacity issues, which, in some cases, could endanger the safety of their users. In fact, we can say that these structures are nearing (or have already reached) the end of their useful lives, necessitating the need to find technical and financial solutions to renovate them as efficiently as possible. Many reinforced concrete bridges experience advanced states of deterioration as a result of extended exposure to hostile environments or even continuously rising use loads. Additionally, since the time of their construction, the technical standards used for the design and dimensioning of the old structures have had to be updated. As a result, some structural components that are still in use do not adhere to the standards for response to loads. In fact, it is frequently less expensive to reinforce the structural components of buildings than to perform a full reconstruction, especially now that, thanks to technological advancements, a variety of reinforcement techniques are still available and their costs are decreasing. One such technique involves externally reinforcing reinforced concrete elements with composite materials because of their superior strength-to-weight ratio and resistance to abrasion. Additionally, these composite materials can be utilized for column containment as well as shear and bending reinforcement for beams. This study aims to evaluate the impact of glass fibers on the general behavior of concrete, in particular on its resistance, deformations, and ductility, using FRP: Fiber-reinforced plastics are materials generally formed of two main and distinct elements: the fiber, "made from glass," and the matrix, "an epoxy resin that allows the transfer of loads between the fibers. The results of the specimens' cyclic loading tests attest to the significance of the contribution that concrete specimen confinement with FRP can make in terms of deformation and resistance to compression after the completion of static loading tests. However, these tests on the specimens' ability to withstand loading and unloading cycles reveal a very significant improvement.Numerosas estruturas existentes, tanto antigas como novas, apresentam sérios problemas de capacidade de carga, que, em alguns casos, podem pôr em perigo a segurança dos seus utilizadores. Com efeito, podemos afirmar que estas estruturas estão próximas (ou já atingiram) o fim da sua vida útil, sendo necessária a procura de soluções técnicas e financeiras para as renovar da forma mais eficiente possível. Muitas pontes de concreto armado experimentam estados avançados de deterioração como resultado da exposição prolongada a ambientes hostis ou mesmo de cargas de uso continuamente crescentes. Além disso, desde a sua construção, as normas técnicas utilizadas para o projeto e dimensionamento das antigas estruturas tiveram que ser atualizadas. Como resultado, alguns componentes estruturais que ainda estão em uso não atendem aos padrões de resposta a cargas. Na verdade, é frequentemente mais barato reforçar os componentes estruturais dos edifícios do que realizar uma reconstrução completa, especialmente agora que, graças aos avanços tecnológicos, uma variedade de técnicas de reforço ainda estão disponíveis e os seus custos estão a diminuir. Uma dessas técnicas envolve o reforço externo de elementos de concreto armado com materiais compósitos devido à sua superior relação resistência-peso e resistência à abrasão. Além disso, esses materiais compósitos podem ser utilizados para contenção de pilares, bem como reforço de cisalhamento e flexão para vigas. Este estudo tem como objetivo avaliar o impacto das fibras de vidro no comportamento geral do concreto, em particular na sua resistência, deformações e ductilidade, utilizando FRP: Os plásticos reforçados com fibras são materiais geralmente formados por dois elementos principais e distintos: a fibra, " feito de vidro", e a matriz, "uma resina epóxi que permite a transferência de cargas entre as fibras. Os resultados dos ensaios de carregamento cíclico dos corpos de prova atestam a importância da contribuição que o confinamento de corpos de prova de concreto com FRP pode dar em termos de deformação e resistência à compressão após a realização dos ensaios de carga estática.No entanto, estes ensaios sobre a capacidade dos corpos de prova em suportar ciclos de carga e descarga revelam uma melhoria muito significativaUniversidade Federal de Viçosa - UFV2023-09-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://periodicos.ufv.br/jcec/article/view/1653010.18540/jcecvl9iss7pp16530-01eThe Journal of Engineering and Exact Sciences; Vol. 9 No. 7 (2023); 16530-01eThe Journal of Engineering and Exact Sciences; Vol. 9 Núm. 7 (2023); 16530-01eThe Journal of Engineering and Exact Sciences; v. 9 n. 7 (2023); 16530-01e2527-1075reponame:The Journal of Engineering and Exact Sciencesinstname:Universidade Federal de Viçosa (UFV)instacron:UFVenghttps://periodicos.ufv.br/jcec/article/view/16530/8222Copyright (c) 2023 The Journal of Engineering and Exact Scienceshttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessLamine, Benzerga AhmedMohamed , AmieurRachid, Rabehi2023-09-22T19:34:35Zoai:ojs.periodicos.ufv.br:article/16530Revistahttp://www.seer.ufv.br/seer/rbeq2/index.php/req2/oai2527-10752527-1075opendoar:2023-09-22T19:34:35The Journal of Engineering and Exact Sciences - Universidade Federal de Viçosa (UFV)false
dc.title.none.fl_str_mv Concrete reinforcement using composite fiberglass-based materials
Reforço de concreto com materiais compósitos à base de fibra de vidro
title Concrete reinforcement using composite fiberglass-based materials
spellingShingle Concrete reinforcement using composite fiberglass-based materials
Lamine, Benzerga Ahmed
Concrete reinforcement
Composite materials
Fiberglass
Deformation
Compressive strength
Reforço de concreto
Materiais compostos
Fibra de vidro
Deformação
Força compressiva
title_short Concrete reinforcement using composite fiberglass-based materials
title_full Concrete reinforcement using composite fiberglass-based materials
title_fullStr Concrete reinforcement using composite fiberglass-based materials
title_full_unstemmed Concrete reinforcement using composite fiberglass-based materials
title_sort Concrete reinforcement using composite fiberglass-based materials
author Lamine, Benzerga Ahmed
author_facet Lamine, Benzerga Ahmed
Mohamed , Amieur
Rachid, Rabehi
author_role author
author2 Mohamed , Amieur
Rachid, Rabehi
author2_role author
author
dc.contributor.author.fl_str_mv Lamine, Benzerga Ahmed
Mohamed , Amieur
Rachid, Rabehi
dc.subject.por.fl_str_mv Concrete reinforcement
Composite materials
Fiberglass
Deformation
Compressive strength
Reforço de concreto
Materiais compostos
Fibra de vidro
Deformação
Força compressiva
topic Concrete reinforcement
Composite materials
Fiberglass
Deformation
Compressive strength
Reforço de concreto
Materiais compostos
Fibra de vidro
Deformação
Força compressiva
description Numerous existing structures, both old and new, have serious load-bearing capacity issues, which, in some cases, could endanger the safety of their users. In fact, we can say that these structures are nearing (or have already reached) the end of their useful lives, necessitating the need to find technical and financial solutions to renovate them as efficiently as possible. Many reinforced concrete bridges experience advanced states of deterioration as a result of extended exposure to hostile environments or even continuously rising use loads. Additionally, since the time of their construction, the technical standards used for the design and dimensioning of the old structures have had to be updated. As a result, some structural components that are still in use do not adhere to the standards for response to loads. In fact, it is frequently less expensive to reinforce the structural components of buildings than to perform a full reconstruction, especially now that, thanks to technological advancements, a variety of reinforcement techniques are still available and their costs are decreasing. One such technique involves externally reinforcing reinforced concrete elements with composite materials because of their superior strength-to-weight ratio and resistance to abrasion. Additionally, these composite materials can be utilized for column containment as well as shear and bending reinforcement for beams. This study aims to evaluate the impact of glass fibers on the general behavior of concrete, in particular on its resistance, deformations, and ductility, using FRP: Fiber-reinforced plastics are materials generally formed of two main and distinct elements: the fiber, "made from glass," and the matrix, "an epoxy resin that allows the transfer of loads between the fibers. The results of the specimens' cyclic loading tests attest to the significance of the contribution that concrete specimen confinement with FRP can make in terms of deformation and resistance to compression after the completion of static loading tests. However, these tests on the specimens' ability to withstand loading and unloading cycles reveal a very significant improvement.
publishDate 2023
dc.date.none.fl_str_mv 2023-09-06
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://periodicos.ufv.br/jcec/article/view/16530
10.18540/jcecvl9iss7pp16530-01e
url https://periodicos.ufv.br/jcec/article/view/16530
identifier_str_mv 10.18540/jcecvl9iss7pp16530-01e
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://periodicos.ufv.br/jcec/article/view/16530/8222
dc.rights.driver.fl_str_mv Copyright (c) 2023 The Journal of Engineering and Exact Sciences
https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2023 The Journal of Engineering and Exact Sciences
https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Viçosa - UFV
publisher.none.fl_str_mv Universidade Federal de Viçosa - UFV
dc.source.none.fl_str_mv The Journal of Engineering and Exact Sciences; Vol. 9 No. 7 (2023); 16530-01e
The Journal of Engineering and Exact Sciences; Vol. 9 Núm. 7 (2023); 16530-01e
The Journal of Engineering and Exact Sciences; v. 9 n. 7 (2023); 16530-01e
2527-1075
reponame:The Journal of Engineering and Exact Sciences
instname:Universidade Federal de Viçosa (UFV)
instacron:UFV
instname_str Universidade Federal de Viçosa (UFV)
instacron_str UFV
institution UFV
reponame_str The Journal of Engineering and Exact Sciences
collection The Journal of Engineering and Exact Sciences
repository.name.fl_str_mv The Journal of Engineering and Exact Sciences - Universidade Federal de Viçosa (UFV)
repository.mail.fl_str_mv
_version_ 1808845241378144256