Concrete reinforcement using composite fiberglass-based materials
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | The Journal of Engineering and Exact Sciences |
Texto Completo: | https://periodicos.ufv.br/jcec/article/view/16530 |
Resumo: | Numerous existing structures, both old and new, have serious load-bearing capacity issues, which, in some cases, could endanger the safety of their users. In fact, we can say that these structures are nearing (or have already reached) the end of their useful lives, necessitating the need to find technical and financial solutions to renovate them as efficiently as possible. Many reinforced concrete bridges experience advanced states of deterioration as a result of extended exposure to hostile environments or even continuously rising use loads. Additionally, since the time of their construction, the technical standards used for the design and dimensioning of the old structures have had to be updated. As a result, some structural components that are still in use do not adhere to the standards for response to loads. In fact, it is frequently less expensive to reinforce the structural components of buildings than to perform a full reconstruction, especially now that, thanks to technological advancements, a variety of reinforcement techniques are still available and their costs are decreasing. One such technique involves externally reinforcing reinforced concrete elements with composite materials because of their superior strength-to-weight ratio and resistance to abrasion. Additionally, these composite materials can be utilized for column containment as well as shear and bending reinforcement for beams. This study aims to evaluate the impact of glass fibers on the general behavior of concrete, in particular on its resistance, deformations, and ductility, using FRP: Fiber-reinforced plastics are materials generally formed of two main and distinct elements: the fiber, "made from glass," and the matrix, "an epoxy resin that allows the transfer of loads between the fibers. The results of the specimens' cyclic loading tests attest to the significance of the contribution that concrete specimen confinement with FRP can make in terms of deformation and resistance to compression after the completion of static loading tests. However, these tests on the specimens' ability to withstand loading and unloading cycles reveal a very significant improvement. |
id |
UFV-6_df33240a3c3289bf7dde7682fafde0da |
---|---|
oai_identifier_str |
oai:ojs.periodicos.ufv.br:article/16530 |
network_acronym_str |
UFV-6 |
network_name_str |
The Journal of Engineering and Exact Sciences |
repository_id_str |
|
spelling |
Concrete reinforcement using composite fiberglass-based materialsReforço de concreto com materiais compósitos à base de fibra de vidro Concrete reinforcementComposite materialsFiberglassDeformationCompressive strengthReforço de concretoMateriais compostosFibra de vidroDeformaçãoForça compressivaNumerous existing structures, both old and new, have serious load-bearing capacity issues, which, in some cases, could endanger the safety of their users. In fact, we can say that these structures are nearing (or have already reached) the end of their useful lives, necessitating the need to find technical and financial solutions to renovate them as efficiently as possible. Many reinforced concrete bridges experience advanced states of deterioration as a result of extended exposure to hostile environments or even continuously rising use loads. Additionally, since the time of their construction, the technical standards used for the design and dimensioning of the old structures have had to be updated. As a result, some structural components that are still in use do not adhere to the standards for response to loads. In fact, it is frequently less expensive to reinforce the structural components of buildings than to perform a full reconstruction, especially now that, thanks to technological advancements, a variety of reinforcement techniques are still available and their costs are decreasing. One such technique involves externally reinforcing reinforced concrete elements with composite materials because of their superior strength-to-weight ratio and resistance to abrasion. Additionally, these composite materials can be utilized for column containment as well as shear and bending reinforcement for beams. This study aims to evaluate the impact of glass fibers on the general behavior of concrete, in particular on its resistance, deformations, and ductility, using FRP: Fiber-reinforced plastics are materials generally formed of two main and distinct elements: the fiber, "made from glass," and the matrix, "an epoxy resin that allows the transfer of loads between the fibers. The results of the specimens' cyclic loading tests attest to the significance of the contribution that concrete specimen confinement with FRP can make in terms of deformation and resistance to compression after the completion of static loading tests. However, these tests on the specimens' ability to withstand loading and unloading cycles reveal a very significant improvement.Numerosas estruturas existentes, tanto antigas como novas, apresentam sérios problemas de capacidade de carga, que, em alguns casos, podem pôr em perigo a segurança dos seus utilizadores. Com efeito, podemos afirmar que estas estruturas estão próximas (ou já atingiram) o fim da sua vida útil, sendo necessária a procura de soluções técnicas e financeiras para as renovar da forma mais eficiente possível. Muitas pontes de concreto armado experimentam estados avançados de deterioração como resultado da exposição prolongada a ambientes hostis ou mesmo de cargas de uso continuamente crescentes. Além disso, desde a sua construção, as normas técnicas utilizadas para o projeto e dimensionamento das antigas estruturas tiveram que ser atualizadas. Como resultado, alguns componentes estruturais que ainda estão em uso não atendem aos padrões de resposta a cargas. Na verdade, é frequentemente mais barato reforçar os componentes estruturais dos edifícios do que realizar uma reconstrução completa, especialmente agora que, graças aos avanços tecnológicos, uma variedade de técnicas de reforço ainda estão disponíveis e os seus custos estão a diminuir. Uma dessas técnicas envolve o reforço externo de elementos de concreto armado com materiais compósitos devido à sua superior relação resistência-peso e resistência à abrasão. Além disso, esses materiais compósitos podem ser utilizados para contenção de pilares, bem como reforço de cisalhamento e flexão para vigas. Este estudo tem como objetivo avaliar o impacto das fibras de vidro no comportamento geral do concreto, em particular na sua resistência, deformações e ductilidade, utilizando FRP: Os plásticos reforçados com fibras são materiais geralmente formados por dois elementos principais e distintos: a fibra, " feito de vidro", e a matriz, "uma resina epóxi que permite a transferência de cargas entre as fibras. Os resultados dos ensaios de carregamento cíclico dos corpos de prova atestam a importância da contribuição que o confinamento de corpos de prova de concreto com FRP pode dar em termos de deformação e resistência à compressão após a realização dos ensaios de carga estática.No entanto, estes ensaios sobre a capacidade dos corpos de prova em suportar ciclos de carga e descarga revelam uma melhoria muito significativaUniversidade Federal de Viçosa - UFV2023-09-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://periodicos.ufv.br/jcec/article/view/1653010.18540/jcecvl9iss7pp16530-01eThe Journal of Engineering and Exact Sciences; Vol. 9 No. 7 (2023); 16530-01eThe Journal of Engineering and Exact Sciences; Vol. 9 Núm. 7 (2023); 16530-01eThe Journal of Engineering and Exact Sciences; v. 9 n. 7 (2023); 16530-01e2527-1075reponame:The Journal of Engineering and Exact Sciencesinstname:Universidade Federal de Viçosa (UFV)instacron:UFVenghttps://periodicos.ufv.br/jcec/article/view/16530/8222Copyright (c) 2023 The Journal of Engineering and Exact Scienceshttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessLamine, Benzerga AhmedMohamed , AmieurRachid, Rabehi2023-09-22T19:34:35Zoai:ojs.periodicos.ufv.br:article/16530Revistahttp://www.seer.ufv.br/seer/rbeq2/index.php/req2/oai2527-10752527-1075opendoar:2023-09-22T19:34:35The Journal of Engineering and Exact Sciences - Universidade Federal de Viçosa (UFV)false |
dc.title.none.fl_str_mv |
Concrete reinforcement using composite fiberglass-based materials Reforço de concreto com materiais compósitos à base de fibra de vidro |
title |
Concrete reinforcement using composite fiberglass-based materials |
spellingShingle |
Concrete reinforcement using composite fiberglass-based materials Lamine, Benzerga Ahmed Concrete reinforcement Composite materials Fiberglass Deformation Compressive strength Reforço de concreto Materiais compostos Fibra de vidro Deformação Força compressiva |
title_short |
Concrete reinforcement using composite fiberglass-based materials |
title_full |
Concrete reinforcement using composite fiberglass-based materials |
title_fullStr |
Concrete reinforcement using composite fiberglass-based materials |
title_full_unstemmed |
Concrete reinforcement using composite fiberglass-based materials |
title_sort |
Concrete reinforcement using composite fiberglass-based materials |
author |
Lamine, Benzerga Ahmed |
author_facet |
Lamine, Benzerga Ahmed Mohamed , Amieur Rachid, Rabehi |
author_role |
author |
author2 |
Mohamed , Amieur Rachid, Rabehi |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Lamine, Benzerga Ahmed Mohamed , Amieur Rachid, Rabehi |
dc.subject.por.fl_str_mv |
Concrete reinforcement Composite materials Fiberglass Deformation Compressive strength Reforço de concreto Materiais compostos Fibra de vidro Deformação Força compressiva |
topic |
Concrete reinforcement Composite materials Fiberglass Deformation Compressive strength Reforço de concreto Materiais compostos Fibra de vidro Deformação Força compressiva |
description |
Numerous existing structures, both old and new, have serious load-bearing capacity issues, which, in some cases, could endanger the safety of their users. In fact, we can say that these structures are nearing (or have already reached) the end of their useful lives, necessitating the need to find technical and financial solutions to renovate them as efficiently as possible. Many reinforced concrete bridges experience advanced states of deterioration as a result of extended exposure to hostile environments or even continuously rising use loads. Additionally, since the time of their construction, the technical standards used for the design and dimensioning of the old structures have had to be updated. As a result, some structural components that are still in use do not adhere to the standards for response to loads. In fact, it is frequently less expensive to reinforce the structural components of buildings than to perform a full reconstruction, especially now that, thanks to technological advancements, a variety of reinforcement techniques are still available and their costs are decreasing. One such technique involves externally reinforcing reinforced concrete elements with composite materials because of their superior strength-to-weight ratio and resistance to abrasion. Additionally, these composite materials can be utilized for column containment as well as shear and bending reinforcement for beams. This study aims to evaluate the impact of glass fibers on the general behavior of concrete, in particular on its resistance, deformations, and ductility, using FRP: Fiber-reinforced plastics are materials generally formed of two main and distinct elements: the fiber, "made from glass," and the matrix, "an epoxy resin that allows the transfer of loads between the fibers. The results of the specimens' cyclic loading tests attest to the significance of the contribution that concrete specimen confinement with FRP can make in terms of deformation and resistance to compression after the completion of static loading tests. However, these tests on the specimens' ability to withstand loading and unloading cycles reveal a very significant improvement. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-09-06 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://periodicos.ufv.br/jcec/article/view/16530 10.18540/jcecvl9iss7pp16530-01e |
url |
https://periodicos.ufv.br/jcec/article/view/16530 |
identifier_str_mv |
10.18540/jcecvl9iss7pp16530-01e |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://periodicos.ufv.br/jcec/article/view/16530/8222 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2023 The Journal of Engineering and Exact Sciences https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2023 The Journal of Engineering and Exact Sciences https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Viçosa - UFV |
publisher.none.fl_str_mv |
Universidade Federal de Viçosa - UFV |
dc.source.none.fl_str_mv |
The Journal of Engineering and Exact Sciences; Vol. 9 No. 7 (2023); 16530-01e The Journal of Engineering and Exact Sciences; Vol. 9 Núm. 7 (2023); 16530-01e The Journal of Engineering and Exact Sciences; v. 9 n. 7 (2023); 16530-01e 2527-1075 reponame:The Journal of Engineering and Exact Sciences instname:Universidade Federal de Viçosa (UFV) instacron:UFV |
instname_str |
Universidade Federal de Viçosa (UFV) |
instacron_str |
UFV |
institution |
UFV |
reponame_str |
The Journal of Engineering and Exact Sciences |
collection |
The Journal of Engineering and Exact Sciences |
repository.name.fl_str_mv |
The Journal of Engineering and Exact Sciences - Universidade Federal de Viçosa (UFV) |
repository.mail.fl_str_mv |
|
_version_ |
1808845241378144256 |