ENEM nas redes sociais: mineração de textos e clusterização

Detalhes bibliográficos
Autor(a) principal: Silva, Leila Maria
Data de Publicação: 2017
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFVJM
Texto Completo: https://acervo.ufvjm.edu.br/items/264dd932-c1de-4902-b98b-66a03b834227
Resumo: A internet é hoje a maior fonte de informação eletrônica existente. Cresce a cada dia o número de usuários da internet, e consequentemente o uso das redes sociais online. São muitas as informações novas que ficam embutidas nas bases de dados textuais. Por causa da sua natureza dinâmica, ou seja, milhões de páginas surgem e desaparecem todos os dias, a tarefa de encontrar informações relevantes nessas bases de dados se torna muito difícil. As técnicas de mineração de textos para a descoberta de informações na web surgiram da necessidade de sanar este problema. O presente trabalho versa sobre a aplicação de métodos de mineração de textos com clusterização na grande quantidade de mensagens sobre o Exame Nacional do Ensino Médio no ano de 2016 provenientes da rede social Twitter. O foco deste estudo está na obtenção de grupos de textos, a fim de possibilitar uma visualização resumida e sintetizada dos assuntos mais comentados pelos usuários. Para manipulação dessas bases textuais, o Modelo Cassiopeia foi utilizado empregando seu algoritmo de agrupamento textual que tem como principal finalidade gerar agrupamentos, ou seja, clusters (grupos) de documentos textuais que apresentam algum tipo de similaridade. O Modelo Cassiopeia apresenta um limite de processamento com a quantidade máxima de 700 tweets. Os tweets passam primeiramente pela fase de limpeza dos textos no pré-processamento, logo após, a utilização do algoritmo no processamento e por fim, as análises dos resultados no pós-processamento. Os resultados obtidos neste trabalho mostram valores coesos quanto à similaridade dos documentos dentro de um cluster e entre os clusters, avaliados por medidas de agrupamento textual, proposto pelo Modelo Cassiopeia. Isso demonstra a aplicabilidade dessa proposta para a visualização sintetizada das informações mais significativas de um determinado tema, muitas vezes permitindo que ações sejam antecipadas e impactos sobre a população afetada sejam reduzidos.
id UFVJM-2_47c249a7e1e2b76a51a47e7ab6ea3260
oai_identifier_str oai:acervo.ufvjm.edu.br:1/1776
network_acronym_str UFVJM-2
network_name_str Repositório Institucional da UFVJM
repository_id_str 2145
spelling Silva, Leila MariaGuelpeli, Marcus Vinícius CarvalhoFonseca, Alexandre RamosSabino, Geruza de Fátima ToméVillela, Maria Lucia BentoUniversidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM)Guelpeli, Marcus Vinícius Carvalho2018-10-04T19:43:35Z2018-10-04T19:43:35Z20172017-12-18SILVA, Leila Maria. ENEM nas redes sociais: mineração de textos e clusterização. 2017. 90 p. Dissertação (Mestrado Profissional) – Programa de Pós-Graduação em Educação, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, 2017.https://acervo.ufvjm.edu.br/items/264dd932-c1de-4902-b98b-66a03b834227A internet é hoje a maior fonte de informação eletrônica existente. Cresce a cada dia o número de usuários da internet, e consequentemente o uso das redes sociais online. São muitas as informações novas que ficam embutidas nas bases de dados textuais. Por causa da sua natureza dinâmica, ou seja, milhões de páginas surgem e desaparecem todos os dias, a tarefa de encontrar informações relevantes nessas bases de dados se torna muito difícil. As técnicas de mineração de textos para a descoberta de informações na web surgiram da necessidade de sanar este problema. O presente trabalho versa sobre a aplicação de métodos de mineração de textos com clusterização na grande quantidade de mensagens sobre o Exame Nacional do Ensino Médio no ano de 2016 provenientes da rede social Twitter. O foco deste estudo está na obtenção de grupos de textos, a fim de possibilitar uma visualização resumida e sintetizada dos assuntos mais comentados pelos usuários. Para manipulação dessas bases textuais, o Modelo Cassiopeia foi utilizado empregando seu algoritmo de agrupamento textual que tem como principal finalidade gerar agrupamentos, ou seja, clusters (grupos) de documentos textuais que apresentam algum tipo de similaridade. O Modelo Cassiopeia apresenta um limite de processamento com a quantidade máxima de 700 tweets. Os tweets passam primeiramente pela fase de limpeza dos textos no pré-processamento, logo após, a utilização do algoritmo no processamento e por fim, as análises dos resultados no pós-processamento. Os resultados obtidos neste trabalho mostram valores coesos quanto à similaridade dos documentos dentro de um cluster e entre os clusters, avaliados por medidas de agrupamento textual, proposto pelo Modelo Cassiopeia. Isso demonstra a aplicabilidade dessa proposta para a visualização sintetizada das informações mais significativas de um determinado tema, muitas vezes permitindo que ações sejam antecipadas e impactos sobre a população afetada sejam reduzidos.Dissertação (Mestrado Profissional) – Programa de Pós-Graduação em Educação, Universidade Federal dos Vales do Jequitinhonha e Mucuri, 2017.The Internet is today the largest source of existing electronic information. The number of Internet users is increasing daily, and consequently the use of online networks online. There are many new information that is embedded in textual databases. Because of its dynamic nature- that is, millions of pages and other numbers-a task of finding relevant information in those databases becomes very difficult. The techniques of text mining for a discovery of information on the web came from the need to heal this problem. The present work is about an application of methods of text mining with clustering in the large amount of messages on the National High School Exams in the year 2016 issu social network Twitter. The focus of this study is on obtaining groups of texts in order to enable a summary and synthesized publication of the appropriate comments of the users. For manipulation of textual bases, the Cassiopeia Model was used by using its textual grouping algorithm that has as main purpose to generate clusters, that is, clusters of textual documents and executed some kind of similarity. The Cassiopeia Model has a processing limit with a maximum of 700 tweets. The tweets first pass through the phase of cleaning the texts without preprocessing, afterwards, a use of the algorithm without processing and, finally, as analysis of the results without post-processing. The results obtained in this work are more closely related to the similarity of the documents within the cluster and between the clusters, through the measurements of textual grouping, proposed by the Cassiopeia Model. This demonstrates an application for an uninformed publication of the most important information on a given topic, often allowing actions to be anticipated and impacts on an affected population to be reduced.porUFVJMA concessão da licença deste item refere-se ao à termo de autorização impresso assinado pelo autor, assim como na licença Creative Commons, com as seguintes condições: Na qualidade de titular dos direitos de autor da publicação, autorizo a Universidade Federal dos Vales do Jequitinhonha e Mucuri e o IBICT a disponibilizar por meio de seus repositórios, sem ressarcimento dos direitos autorais, de acordo com a Lei nº 9610/98, o texto integral da obra disponibilizada, conforme permissões assinaladas, para fins de leitura, impressão e/ou download, a título de divulgação da produção científica brasileira, e preservação, a partir desta data.info:eu-repo/semantics/openAccessENEM nas redes sociais: mineração de textos e clusterizaçãoinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisMineração de textosTwitterENEMClusterizaçãoRedes sociaisCassiopeiaText miningClusteringSocial networksreponame:Repositório Institucional da UFVJMinstname:Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM)instacron:UFVJMTHUMBNAILleila_maria_silva.pdf.jpgleila_maria_silva.pdf.jpgGenerated Thumbnailimage/jpeg2334https://acervo.ufvjm.edu.br//bitstreams/09ac35f4-51a4-491b-bd8f-3a8ac6ed1fa8/download099dcb9b18ada8a8ef0e9bf590263e2bMD57falseAnonymousREADORIGINALleila_maria_silva.pdfleila_maria_silva.pdfapplication/pdf2106552https://acervo.ufvjm.edu.br//bitstreams/af5bab0f-1500-4690-8fc9-52fe47824644/download53ba37c88f3aa004f2201a85b74fd640MD51trueAnonymousREADCC-LICENSElicense_urllicense_urltext/plain; charset=utf-849https://acervo.ufvjm.edu.br//bitstreams/02201185-7df8-420c-8b08-fab0b1bba75b/download4afdbb8c545fd630ea7db775da747b2fMD52falseAnonymousREADlicense_textlicense_texttext/html; charset=utf-80https://acervo.ufvjm.edu.br//bitstreams/b50b6b0a-9347-44f6-98ce-c770f69da89f/downloadd41d8cd98f00b204e9800998ecf8427eMD53falseAnonymousREADlicense_rdflicense_rdfapplication/rdf+xml; charset=utf-80https://acervo.ufvjm.edu.br//bitstreams/eb783bac-1452-42cc-9e82-14de96d455a7/downloadd41d8cd98f00b204e9800998ecf8427eMD54falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-82157https://acervo.ufvjm.edu.br//bitstreams/fbe576cf-a623-44cc-a4d6-0d6b0601d5ee/downloadc0fe10782d3e2994b7c028f47c86ff9eMD55falseAnonymousREADTEXTleila_maria_silva.pdf.txtleila_maria_silva.pdf.txtExtracted texttext/plain121037https://acervo.ufvjm.edu.br//bitstreams/2c832826-fa74-423c-8419-9c70a0f111d8/downloadd891383ba02a4acc18e7bb99d103a340MD56falseAnonymousREAD1/17762024-09-12 06:07:08.286open.accessoai:acervo.ufvjm.edu.br:1/1776https://acervo.ufvjm.edu.br/Repositório InstitucionalPUBhttps://repositorio.ufvjm.edu.brrepositorio@ufvjm.edu.bropendoar:21452024-09-12T06:07:08Repositório Institucional da UFVJM - Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM)falseTElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKQW8gY29uY29yZGFyIGNvbSBlc3RhIGxpY2Vuw6dhLCB2b2PDqihzKSBhdXRvcihlcykgb3UgdGl0dWxhcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIG9icmEgYXF1aSBkZXNjcml0YSBjb25jZWRlKG0pIArDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkb3MgVmFsZXMgZG8gSmVxdWl0aW5ob25oYSBlIE11Y3VyaSwgZ2VzdG9yYSBkbyBSZXBvc2l0w7NyaW8sIGRlbm9taW5hZG8gUkkvVUZWSk0sIApvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgY29udmVydGVyIChjb21vIGRlZmluaWRvIGFiYWl4bykgZS9vdSBkaXN0cmlidWlyIG8gCmRvY3VtZW50byBkZXBvc2l0YWRvIGVtIGZvcm1hdG8gaW1wcmVzc28sIGVsZXRyw7RuaWNvIG91IGVtIHF1YWxxdWVyIG91dHJvIG1laW8uClZvY8OqKHMpIGNvbmNvcmRhKG0pIHF1ZSBhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRvcyBWYWxlcyBkbyBKZXF1aXRpbmhvbmhhIGUgTXVjdXJpLCAKZ2VzdG9yYSBkbyBSSS9VRlZKTSwgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIGNvbnZlcnRlciBvIGFycXVpdm8gZGVwb3NpdGFkbyBhIHF1YWxxdWVyIG1laW8gb3UgCmZvcm1hdG8gY29tIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KVm9jw6oocykgdGFtYsOpbSBjb25jb3JkYShtKSBxdWUgYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkb3MgVmFsZXMgZG8gSmVxdWl0aW5ob25oYSBlIE11Y3VyaSwgCmdlc3RvcmEgZG8gUkkvVUZWSk0sIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBkZXN0ZSBkZXDDs3NpdG8gcGFyYSBmaW5zIGRlIHNlZ3VyYW7Dp2EsIGJhY2stdXAgZS9vdSBwcmVzZXJ2YcOnw6NvLgpWb2PDqihzKSBkZWNsYXJhKG0pIHF1ZSBhIGFwcmVzZW50YcOnw6NvIGRvIHNldSB0cmFiYWxobyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqihzKSBwb2RlKG0pIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIApuZXN0YSBsaWNlbsOnYSBlIG5vIFRlcm1vIGRlIEF1dG9yaXphw6fDo28gYSBzZXIgZW50cmVndWUuClZvY8OqKHMpIHRhbWLDqW0gZGVjbGFyYShtKSBxdWUgbyBlbnZpbyDDqSBkZSBzZXUgY29uaGVjaW1lbnRvIGUgbsOjbyBpbmZyaW5nZSBvcyBkaXJlaXRvcyBhdXRvcmFpcyAKZGUgb3V0cmEgcGVzc29hIG91IGluc3RpdHVpw6fDo28uCkNhc28gbyBkb2N1bWVudG8gYSBzZXIgZGVwb3NpdGFkbyBjb250ZW5oYSBtYXRlcmlhbCBwYXJhIG8gcXVhbCB2b2PDqihzKSBuw6NvIGRldMOpbSBhIHRpdHVsYXJpZGFkZSBkb3MgZGlyZWl0b3MgZGUgYXV0b3JhaXMsCnZvY8OqKHMpIGRlY2xhcmEobSkgcXVlIG9idGV2ZSBhIHBlcm1pc3PDo28gaXJyZXN0cml0YSBkbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBkZSBjb25jZWRlciDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbApkb3MgVmFsZXMgZG8gSmVxdWl0aW5ob25oYSBlIE11Y3VyaSwgZ2VzdG9yYSBkbyBSSS9VRlZKTSwgb3MgZGlyZWl0b3MgcmVxdWVyaWRvcyBwb3IgZXN0YSBsaWNlbsOnYSBlIHF1ZSBvcyBtYXRlcmlhaXMgCmRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcywgZXN0w6NvIGRldmlkYW1lbnRlIGlkZW50aWZpY2Fkb3MgZSByZWNvbmhlY2lkb3Mgbm8gdGV4dG8gb3UgY29udGXDumRvIGRhIGFwcmVzZW50YcOnw6NvLgpDQVNPIE8gVFJBQkFMSE8gREVQT1NJVEFETyBURU5IQSBTSURPIEZJTkFOQ0lBRE8gT1UgQVBPSUFETyBQT1IgVU0gw5NSR8ODTywgUVVFIE7Dg08gQSBJTlNUSVRVScOHw4NPIERFU1RFIFJFUE9TSVTDk1JJTzogVk9Dw4ogREVDTEFSQSBURVIgQ1VNUFJJRE8gVE9ET1MgT1MgRElSRUlUT1MgREUgUkVWSVPDg08gRSBRVUFJU1FVRVIgT1VUUkFTIE9CUklHQcOHw5VFUyBSRVFVRVJJREFTIApQRUxPUyBDT05UUkFUT1MgT1UgQUNPUkRPUy4gCk8gUkkvVUZWSk0gaWRlbnRpZmljYXLDoSBjbGFyYW1lbnRlIG8gc2V1KHMpIG5vbWUocykgY29tbyBhdXRvcihlcykgb3UgdGl0dWxhcihlcykgZG8gZGlyZWl0byBkZSAKYXV0b3IoZXMpIGRvIGRvY3VtZW50byBzdWJtZXRpZG8gZSBkZWNsYXJhIHF1ZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvIGFsw6ltIGRhcyBwZXJtaXRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgoK
dc.title.pt_BR.fl_str_mv ENEM nas redes sociais: mineração de textos e clusterização
title ENEM nas redes sociais: mineração de textos e clusterização
spellingShingle ENEM nas redes sociais: mineração de textos e clusterização
Silva, Leila Maria
Mineração de textos
Twitter
ENEM
Clusterização
Redes sociais
Cassiopeia
Text mining
Clustering
Social networks
title_short ENEM nas redes sociais: mineração de textos e clusterização
title_full ENEM nas redes sociais: mineração de textos e clusterização
title_fullStr ENEM nas redes sociais: mineração de textos e clusterização
title_full_unstemmed ENEM nas redes sociais: mineração de textos e clusterização
title_sort ENEM nas redes sociais: mineração de textos e clusterização
author Silva, Leila Maria
author_facet Silva, Leila Maria
author_role author
dc.contributor.referee.none.fl_str_mv Guelpeli, Marcus Vinícius Carvalho
Fonseca, Alexandre Ramos
Sabino, Geruza de Fátima Tomé
Villela, Maria Lucia Bento
dc.contributor.institution.pt_BR.fl_str_mv Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM)
dc.contributor.author.fl_str_mv Silva, Leila Maria
dc.contributor.advisor1.fl_str_mv Guelpeli, Marcus Vinícius Carvalho
contributor_str_mv Guelpeli, Marcus Vinícius Carvalho
dc.subject.keyword.pt_BR.fl_str_mv Mineração de textos
Twitter
ENEM
Clusterização
Redes sociais
Cassiopeia
topic Mineração de textos
Twitter
ENEM
Clusterização
Redes sociais
Cassiopeia
Text mining
Clustering
Social networks
dc.subject.keyword.en.fl_str_mv Text mining
Clustering
Social networks
description A internet é hoje a maior fonte de informação eletrônica existente. Cresce a cada dia o número de usuários da internet, e consequentemente o uso das redes sociais online. São muitas as informações novas que ficam embutidas nas bases de dados textuais. Por causa da sua natureza dinâmica, ou seja, milhões de páginas surgem e desaparecem todos os dias, a tarefa de encontrar informações relevantes nessas bases de dados se torna muito difícil. As técnicas de mineração de textos para a descoberta de informações na web surgiram da necessidade de sanar este problema. O presente trabalho versa sobre a aplicação de métodos de mineração de textos com clusterização na grande quantidade de mensagens sobre o Exame Nacional do Ensino Médio no ano de 2016 provenientes da rede social Twitter. O foco deste estudo está na obtenção de grupos de textos, a fim de possibilitar uma visualização resumida e sintetizada dos assuntos mais comentados pelos usuários. Para manipulação dessas bases textuais, o Modelo Cassiopeia foi utilizado empregando seu algoritmo de agrupamento textual que tem como principal finalidade gerar agrupamentos, ou seja, clusters (grupos) de documentos textuais que apresentam algum tipo de similaridade. O Modelo Cassiopeia apresenta um limite de processamento com a quantidade máxima de 700 tweets. Os tweets passam primeiramente pela fase de limpeza dos textos no pré-processamento, logo após, a utilização do algoritmo no processamento e por fim, as análises dos resultados no pós-processamento. Os resultados obtidos neste trabalho mostram valores coesos quanto à similaridade dos documentos dentro de um cluster e entre os clusters, avaliados por medidas de agrupamento textual, proposto pelo Modelo Cassiopeia. Isso demonstra a aplicabilidade dessa proposta para a visualização sintetizada das informações mais significativas de um determinado tema, muitas vezes permitindo que ações sejam antecipadas e impactos sobre a população afetada sejam reduzidos.
publishDate 2017
dc.date.submitted.none.fl_str_mv 2017-12-18
dc.date.issued.fl_str_mv 2017
dc.date.accessioned.fl_str_mv 2018-10-04T19:43:35Z
dc.date.available.fl_str_mv 2018-10-04T19:43:35Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv SILVA, Leila Maria. ENEM nas redes sociais: mineração de textos e clusterização. 2017. 90 p. Dissertação (Mestrado Profissional) – Programa de Pós-Graduação em Educação, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, 2017.
dc.identifier.uri.fl_str_mv https://acervo.ufvjm.edu.br/items/264dd932-c1de-4902-b98b-66a03b834227
identifier_str_mv SILVA, Leila Maria. ENEM nas redes sociais: mineração de textos e clusterização. 2017. 90 p. Dissertação (Mestrado Profissional) – Programa de Pós-Graduação em Educação, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, 2017.
url https://acervo.ufvjm.edu.br/items/264dd932-c1de-4902-b98b-66a03b834227
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv UFVJM
publisher.none.fl_str_mv UFVJM
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFVJM
instname:Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM)
instacron:UFVJM
instname_str Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM)
instacron_str UFVJM
institution UFVJM
reponame_str Repositório Institucional da UFVJM
collection Repositório Institucional da UFVJM
bitstream.url.fl_str_mv https://acervo.ufvjm.edu.br//bitstreams/09ac35f4-51a4-491b-bd8f-3a8ac6ed1fa8/download
https://acervo.ufvjm.edu.br//bitstreams/af5bab0f-1500-4690-8fc9-52fe47824644/download
https://acervo.ufvjm.edu.br//bitstreams/02201185-7df8-420c-8b08-fab0b1bba75b/download
https://acervo.ufvjm.edu.br//bitstreams/b50b6b0a-9347-44f6-98ce-c770f69da89f/download
https://acervo.ufvjm.edu.br//bitstreams/eb783bac-1452-42cc-9e82-14de96d455a7/download
https://acervo.ufvjm.edu.br//bitstreams/fbe576cf-a623-44cc-a4d6-0d6b0601d5ee/download
https://acervo.ufvjm.edu.br//bitstreams/2c832826-fa74-423c-8419-9c70a0f111d8/download
bitstream.checksum.fl_str_mv 099dcb9b18ada8a8ef0e9bf590263e2b
53ba37c88f3aa004f2201a85b74fd640
4afdbb8c545fd630ea7db775da747b2f
d41d8cd98f00b204e9800998ecf8427e
d41d8cd98f00b204e9800998ecf8427e
c0fe10782d3e2994b7c028f47c86ff9e
d891383ba02a4acc18e7bb99d103a340
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFVJM - Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM)
repository.mail.fl_str_mv repositorio@ufvjm.edu.br
_version_ 1813710511850651648