ENEM nas redes sociais: mineração de textos e clusterização
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFVJM |
Texto Completo: | https://acervo.ufvjm.edu.br/items/264dd932-c1de-4902-b98b-66a03b834227 |
Resumo: | A internet é hoje a maior fonte de informação eletrônica existente. Cresce a cada dia o número de usuários da internet, e consequentemente o uso das redes sociais online. São muitas as informações novas que ficam embutidas nas bases de dados textuais. Por causa da sua natureza dinâmica, ou seja, milhões de páginas surgem e desaparecem todos os dias, a tarefa de encontrar informações relevantes nessas bases de dados se torna muito difícil. As técnicas de mineração de textos para a descoberta de informações na web surgiram da necessidade de sanar este problema. O presente trabalho versa sobre a aplicação de métodos de mineração de textos com clusterização na grande quantidade de mensagens sobre o Exame Nacional do Ensino Médio no ano de 2016 provenientes da rede social Twitter. O foco deste estudo está na obtenção de grupos de textos, a fim de possibilitar uma visualização resumida e sintetizada dos assuntos mais comentados pelos usuários. Para manipulação dessas bases textuais, o Modelo Cassiopeia foi utilizado empregando seu algoritmo de agrupamento textual que tem como principal finalidade gerar agrupamentos, ou seja, clusters (grupos) de documentos textuais que apresentam algum tipo de similaridade. O Modelo Cassiopeia apresenta um limite de processamento com a quantidade máxima de 700 tweets. Os tweets passam primeiramente pela fase de limpeza dos textos no pré-processamento, logo após, a utilização do algoritmo no processamento e por fim, as análises dos resultados no pós-processamento. Os resultados obtidos neste trabalho mostram valores coesos quanto à similaridade dos documentos dentro de um cluster e entre os clusters, avaliados por medidas de agrupamento textual, proposto pelo Modelo Cassiopeia. Isso demonstra a aplicabilidade dessa proposta para a visualização sintetizada das informações mais significativas de um determinado tema, muitas vezes permitindo que ações sejam antecipadas e impactos sobre a população afetada sejam reduzidos. |
id |
UFVJM-2_47c249a7e1e2b76a51a47e7ab6ea3260 |
---|---|
oai_identifier_str |
oai:acervo.ufvjm.edu.br:1/1776 |
network_acronym_str |
UFVJM-2 |
network_name_str |
Repositório Institucional da UFVJM |
repository_id_str |
2145 |
spelling |
Silva, Leila MariaGuelpeli, Marcus Vinícius CarvalhoFonseca, Alexandre RamosSabino, Geruza de Fátima ToméVillela, Maria Lucia BentoUniversidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM)Guelpeli, Marcus Vinícius Carvalho2018-10-04T19:43:35Z2018-10-04T19:43:35Z20172017-12-18SILVA, Leila Maria. ENEM nas redes sociais: mineração de textos e clusterização. 2017. 90 p. Dissertação (Mestrado Profissional) – Programa de Pós-Graduação em Educação, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, 2017.https://acervo.ufvjm.edu.br/items/264dd932-c1de-4902-b98b-66a03b834227A internet é hoje a maior fonte de informação eletrônica existente. Cresce a cada dia o número de usuários da internet, e consequentemente o uso das redes sociais online. São muitas as informações novas que ficam embutidas nas bases de dados textuais. Por causa da sua natureza dinâmica, ou seja, milhões de páginas surgem e desaparecem todos os dias, a tarefa de encontrar informações relevantes nessas bases de dados se torna muito difícil. As técnicas de mineração de textos para a descoberta de informações na web surgiram da necessidade de sanar este problema. O presente trabalho versa sobre a aplicação de métodos de mineração de textos com clusterização na grande quantidade de mensagens sobre o Exame Nacional do Ensino Médio no ano de 2016 provenientes da rede social Twitter. O foco deste estudo está na obtenção de grupos de textos, a fim de possibilitar uma visualização resumida e sintetizada dos assuntos mais comentados pelos usuários. Para manipulação dessas bases textuais, o Modelo Cassiopeia foi utilizado empregando seu algoritmo de agrupamento textual que tem como principal finalidade gerar agrupamentos, ou seja, clusters (grupos) de documentos textuais que apresentam algum tipo de similaridade. O Modelo Cassiopeia apresenta um limite de processamento com a quantidade máxima de 700 tweets. Os tweets passam primeiramente pela fase de limpeza dos textos no pré-processamento, logo após, a utilização do algoritmo no processamento e por fim, as análises dos resultados no pós-processamento. Os resultados obtidos neste trabalho mostram valores coesos quanto à similaridade dos documentos dentro de um cluster e entre os clusters, avaliados por medidas de agrupamento textual, proposto pelo Modelo Cassiopeia. Isso demonstra a aplicabilidade dessa proposta para a visualização sintetizada das informações mais significativas de um determinado tema, muitas vezes permitindo que ações sejam antecipadas e impactos sobre a população afetada sejam reduzidos.Dissertação (Mestrado Profissional) – Programa de Pós-Graduação em Educação, Universidade Federal dos Vales do Jequitinhonha e Mucuri, 2017.The Internet is today the largest source of existing electronic information. The number of Internet users is increasing daily, and consequently the use of online networks online. There are many new information that is embedded in textual databases. Because of its dynamic nature- that is, millions of pages and other numbers-a task of finding relevant information in those databases becomes very difficult. The techniques of text mining for a discovery of information on the web came from the need to heal this problem. The present work is about an application of methods of text mining with clustering in the large amount of messages on the National High School Exams in the year 2016 issu social network Twitter. The focus of this study is on obtaining groups of texts in order to enable a summary and synthesized publication of the appropriate comments of the users. For manipulation of textual bases, the Cassiopeia Model was used by using its textual grouping algorithm that has as main purpose to generate clusters, that is, clusters of textual documents and executed some kind of similarity. The Cassiopeia Model has a processing limit with a maximum of 700 tweets. The tweets first pass through the phase of cleaning the texts without preprocessing, afterwards, a use of the algorithm without processing and, finally, as analysis of the results without post-processing. The results obtained in this work are more closely related to the similarity of the documents within the cluster and between the clusters, through the measurements of textual grouping, proposed by the Cassiopeia Model. This demonstrates an application for an uninformed publication of the most important information on a given topic, often allowing actions to be anticipated and impacts on an affected population to be reduced.porUFVJMA concessão da licença deste item refere-se ao à termo de autorização impresso assinado pelo autor, assim como na licença Creative Commons, com as seguintes condições: Na qualidade de titular dos direitos de autor da publicação, autorizo a Universidade Federal dos Vales do Jequitinhonha e Mucuri e o IBICT a disponibilizar por meio de seus repositórios, sem ressarcimento dos direitos autorais, de acordo com a Lei nº 9610/98, o texto integral da obra disponibilizada, conforme permissões assinaladas, para fins de leitura, impressão e/ou download, a título de divulgação da produção científica brasileira, e preservação, a partir desta data.info:eu-repo/semantics/openAccessENEM nas redes sociais: mineração de textos e clusterizaçãoinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisMineração de textosTwitterENEMClusterizaçãoRedes sociaisCassiopeiaText miningClusteringSocial networksreponame:Repositório Institucional da UFVJMinstname:Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM)instacron:UFVJMTHUMBNAILleila_maria_silva.pdf.jpgleila_maria_silva.pdf.jpgGenerated Thumbnailimage/jpeg2334https://acervo.ufvjm.edu.br//bitstreams/09ac35f4-51a4-491b-bd8f-3a8ac6ed1fa8/download099dcb9b18ada8a8ef0e9bf590263e2bMD57falseAnonymousREADORIGINALleila_maria_silva.pdfleila_maria_silva.pdfapplication/pdf2106552https://acervo.ufvjm.edu.br//bitstreams/af5bab0f-1500-4690-8fc9-52fe47824644/download53ba37c88f3aa004f2201a85b74fd640MD51trueAnonymousREADCC-LICENSElicense_urllicense_urltext/plain; charset=utf-849https://acervo.ufvjm.edu.br//bitstreams/02201185-7df8-420c-8b08-fab0b1bba75b/download4afdbb8c545fd630ea7db775da747b2fMD52falseAnonymousREADlicense_textlicense_texttext/html; charset=utf-80https://acervo.ufvjm.edu.br//bitstreams/b50b6b0a-9347-44f6-98ce-c770f69da89f/downloadd41d8cd98f00b204e9800998ecf8427eMD53falseAnonymousREADlicense_rdflicense_rdfapplication/rdf+xml; charset=utf-80https://acervo.ufvjm.edu.br//bitstreams/eb783bac-1452-42cc-9e82-14de96d455a7/downloadd41d8cd98f00b204e9800998ecf8427eMD54falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-82157https://acervo.ufvjm.edu.br//bitstreams/fbe576cf-a623-44cc-a4d6-0d6b0601d5ee/downloadc0fe10782d3e2994b7c028f47c86ff9eMD55falseAnonymousREADTEXTleila_maria_silva.pdf.txtleila_maria_silva.pdf.txtExtracted texttext/plain121037https://acervo.ufvjm.edu.br//bitstreams/2c832826-fa74-423c-8419-9c70a0f111d8/downloadd891383ba02a4acc18e7bb99d103a340MD56falseAnonymousREAD1/17762024-09-12 06:07:08.286open.accessoai:acervo.ufvjm.edu.br:1/1776https://acervo.ufvjm.edu.br/Repositório InstitucionalPUBhttps://repositorio.ufvjm.edu.brrepositorio@ufvjm.edu.bropendoar:21452024-09-12T06:07:08Repositório Institucional da UFVJM - Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM)falseTElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKQW8gY29uY29yZGFyIGNvbSBlc3RhIGxpY2Vuw6dhLCB2b2PDqihzKSBhdXRvcihlcykgb3UgdGl0dWxhcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIG9icmEgYXF1aSBkZXNjcml0YSBjb25jZWRlKG0pIArDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkb3MgVmFsZXMgZG8gSmVxdWl0aW5ob25oYSBlIE11Y3VyaSwgZ2VzdG9yYSBkbyBSZXBvc2l0w7NyaW8sIGRlbm9taW5hZG8gUkkvVUZWSk0sIApvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgY29udmVydGVyIChjb21vIGRlZmluaWRvIGFiYWl4bykgZS9vdSBkaXN0cmlidWlyIG8gCmRvY3VtZW50byBkZXBvc2l0YWRvIGVtIGZvcm1hdG8gaW1wcmVzc28sIGVsZXRyw7RuaWNvIG91IGVtIHF1YWxxdWVyIG91dHJvIG1laW8uClZvY8OqKHMpIGNvbmNvcmRhKG0pIHF1ZSBhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRvcyBWYWxlcyBkbyBKZXF1aXRpbmhvbmhhIGUgTXVjdXJpLCAKZ2VzdG9yYSBkbyBSSS9VRlZKTSwgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIGNvbnZlcnRlciBvIGFycXVpdm8gZGVwb3NpdGFkbyBhIHF1YWxxdWVyIG1laW8gb3UgCmZvcm1hdG8gY29tIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KVm9jw6oocykgdGFtYsOpbSBjb25jb3JkYShtKSBxdWUgYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkb3MgVmFsZXMgZG8gSmVxdWl0aW5ob25oYSBlIE11Y3VyaSwgCmdlc3RvcmEgZG8gUkkvVUZWSk0sIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBkZXN0ZSBkZXDDs3NpdG8gcGFyYSBmaW5zIGRlIHNlZ3VyYW7Dp2EsIGJhY2stdXAgZS9vdSBwcmVzZXJ2YcOnw6NvLgpWb2PDqihzKSBkZWNsYXJhKG0pIHF1ZSBhIGFwcmVzZW50YcOnw6NvIGRvIHNldSB0cmFiYWxobyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqihzKSBwb2RlKG0pIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIApuZXN0YSBsaWNlbsOnYSBlIG5vIFRlcm1vIGRlIEF1dG9yaXphw6fDo28gYSBzZXIgZW50cmVndWUuClZvY8OqKHMpIHRhbWLDqW0gZGVjbGFyYShtKSBxdWUgbyBlbnZpbyDDqSBkZSBzZXUgY29uaGVjaW1lbnRvIGUgbsOjbyBpbmZyaW5nZSBvcyBkaXJlaXRvcyBhdXRvcmFpcyAKZGUgb3V0cmEgcGVzc29hIG91IGluc3RpdHVpw6fDo28uCkNhc28gbyBkb2N1bWVudG8gYSBzZXIgZGVwb3NpdGFkbyBjb250ZW5oYSBtYXRlcmlhbCBwYXJhIG8gcXVhbCB2b2PDqihzKSBuw6NvIGRldMOpbSBhIHRpdHVsYXJpZGFkZSBkb3MgZGlyZWl0b3MgZGUgYXV0b3JhaXMsCnZvY8OqKHMpIGRlY2xhcmEobSkgcXVlIG9idGV2ZSBhIHBlcm1pc3PDo28gaXJyZXN0cml0YSBkbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBkZSBjb25jZWRlciDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbApkb3MgVmFsZXMgZG8gSmVxdWl0aW5ob25oYSBlIE11Y3VyaSwgZ2VzdG9yYSBkbyBSSS9VRlZKTSwgb3MgZGlyZWl0b3MgcmVxdWVyaWRvcyBwb3IgZXN0YSBsaWNlbsOnYSBlIHF1ZSBvcyBtYXRlcmlhaXMgCmRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcywgZXN0w6NvIGRldmlkYW1lbnRlIGlkZW50aWZpY2Fkb3MgZSByZWNvbmhlY2lkb3Mgbm8gdGV4dG8gb3UgY29udGXDumRvIGRhIGFwcmVzZW50YcOnw6NvLgpDQVNPIE8gVFJBQkFMSE8gREVQT1NJVEFETyBURU5IQSBTSURPIEZJTkFOQ0lBRE8gT1UgQVBPSUFETyBQT1IgVU0gw5NSR8ODTywgUVVFIE7Dg08gQSBJTlNUSVRVScOHw4NPIERFU1RFIFJFUE9TSVTDk1JJTzogVk9Dw4ogREVDTEFSQSBURVIgQ1VNUFJJRE8gVE9ET1MgT1MgRElSRUlUT1MgREUgUkVWSVPDg08gRSBRVUFJU1FVRVIgT1VUUkFTIE9CUklHQcOHw5VFUyBSRVFVRVJJREFTIApQRUxPUyBDT05UUkFUT1MgT1UgQUNPUkRPUy4gCk8gUkkvVUZWSk0gaWRlbnRpZmljYXLDoSBjbGFyYW1lbnRlIG8gc2V1KHMpIG5vbWUocykgY29tbyBhdXRvcihlcykgb3UgdGl0dWxhcihlcykgZG8gZGlyZWl0byBkZSAKYXV0b3IoZXMpIGRvIGRvY3VtZW50byBzdWJtZXRpZG8gZSBkZWNsYXJhIHF1ZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvIGFsw6ltIGRhcyBwZXJtaXRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgoK |
dc.title.pt_BR.fl_str_mv |
ENEM nas redes sociais: mineração de textos e clusterização |
title |
ENEM nas redes sociais: mineração de textos e clusterização |
spellingShingle |
ENEM nas redes sociais: mineração de textos e clusterização Silva, Leila Maria Mineração de textos ENEM Clusterização Redes sociais Cassiopeia Text mining Clustering Social networks |
title_short |
ENEM nas redes sociais: mineração de textos e clusterização |
title_full |
ENEM nas redes sociais: mineração de textos e clusterização |
title_fullStr |
ENEM nas redes sociais: mineração de textos e clusterização |
title_full_unstemmed |
ENEM nas redes sociais: mineração de textos e clusterização |
title_sort |
ENEM nas redes sociais: mineração de textos e clusterização |
author |
Silva, Leila Maria |
author_facet |
Silva, Leila Maria |
author_role |
author |
dc.contributor.referee.none.fl_str_mv |
Guelpeli, Marcus Vinícius Carvalho Fonseca, Alexandre Ramos Sabino, Geruza de Fátima Tomé Villela, Maria Lucia Bento |
dc.contributor.institution.pt_BR.fl_str_mv |
Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM) |
dc.contributor.author.fl_str_mv |
Silva, Leila Maria |
dc.contributor.advisor1.fl_str_mv |
Guelpeli, Marcus Vinícius Carvalho |
contributor_str_mv |
Guelpeli, Marcus Vinícius Carvalho |
dc.subject.keyword.pt_BR.fl_str_mv |
Mineração de textos ENEM Clusterização Redes sociais Cassiopeia |
topic |
Mineração de textos ENEM Clusterização Redes sociais Cassiopeia Text mining Clustering Social networks |
dc.subject.keyword.en.fl_str_mv |
Text mining Clustering Social networks |
description |
A internet é hoje a maior fonte de informação eletrônica existente. Cresce a cada dia o número de usuários da internet, e consequentemente o uso das redes sociais online. São muitas as informações novas que ficam embutidas nas bases de dados textuais. Por causa da sua natureza dinâmica, ou seja, milhões de páginas surgem e desaparecem todos os dias, a tarefa de encontrar informações relevantes nessas bases de dados se torna muito difícil. As técnicas de mineração de textos para a descoberta de informações na web surgiram da necessidade de sanar este problema. O presente trabalho versa sobre a aplicação de métodos de mineração de textos com clusterização na grande quantidade de mensagens sobre o Exame Nacional do Ensino Médio no ano de 2016 provenientes da rede social Twitter. O foco deste estudo está na obtenção de grupos de textos, a fim de possibilitar uma visualização resumida e sintetizada dos assuntos mais comentados pelos usuários. Para manipulação dessas bases textuais, o Modelo Cassiopeia foi utilizado empregando seu algoritmo de agrupamento textual que tem como principal finalidade gerar agrupamentos, ou seja, clusters (grupos) de documentos textuais que apresentam algum tipo de similaridade. O Modelo Cassiopeia apresenta um limite de processamento com a quantidade máxima de 700 tweets. Os tweets passam primeiramente pela fase de limpeza dos textos no pré-processamento, logo após, a utilização do algoritmo no processamento e por fim, as análises dos resultados no pós-processamento. Os resultados obtidos neste trabalho mostram valores coesos quanto à similaridade dos documentos dentro de um cluster e entre os clusters, avaliados por medidas de agrupamento textual, proposto pelo Modelo Cassiopeia. Isso demonstra a aplicabilidade dessa proposta para a visualização sintetizada das informações mais significativas de um determinado tema, muitas vezes permitindo que ações sejam antecipadas e impactos sobre a população afetada sejam reduzidos. |
publishDate |
2017 |
dc.date.submitted.none.fl_str_mv |
2017-12-18 |
dc.date.issued.fl_str_mv |
2017 |
dc.date.accessioned.fl_str_mv |
2018-10-04T19:43:35Z |
dc.date.available.fl_str_mv |
2018-10-04T19:43:35Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
SILVA, Leila Maria. ENEM nas redes sociais: mineração de textos e clusterização. 2017. 90 p. Dissertação (Mestrado Profissional) – Programa de Pós-Graduação em Educação, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, 2017. |
dc.identifier.uri.fl_str_mv |
https://acervo.ufvjm.edu.br/items/264dd932-c1de-4902-b98b-66a03b834227 |
identifier_str_mv |
SILVA, Leila Maria. ENEM nas redes sociais: mineração de textos e clusterização. 2017. 90 p. Dissertação (Mestrado Profissional) – Programa de Pós-Graduação em Educação, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, 2017. |
url |
https://acervo.ufvjm.edu.br/items/264dd932-c1de-4902-b98b-66a03b834227 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
UFVJM |
publisher.none.fl_str_mv |
UFVJM |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFVJM instname:Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM) instacron:UFVJM |
instname_str |
Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM) |
instacron_str |
UFVJM |
institution |
UFVJM |
reponame_str |
Repositório Institucional da UFVJM |
collection |
Repositório Institucional da UFVJM |
bitstream.url.fl_str_mv |
https://acervo.ufvjm.edu.br//bitstreams/09ac35f4-51a4-491b-bd8f-3a8ac6ed1fa8/download https://acervo.ufvjm.edu.br//bitstreams/af5bab0f-1500-4690-8fc9-52fe47824644/download https://acervo.ufvjm.edu.br//bitstreams/02201185-7df8-420c-8b08-fab0b1bba75b/download https://acervo.ufvjm.edu.br//bitstreams/b50b6b0a-9347-44f6-98ce-c770f69da89f/download https://acervo.ufvjm.edu.br//bitstreams/eb783bac-1452-42cc-9e82-14de96d455a7/download https://acervo.ufvjm.edu.br//bitstreams/fbe576cf-a623-44cc-a4d6-0d6b0601d5ee/download https://acervo.ufvjm.edu.br//bitstreams/2c832826-fa74-423c-8419-9c70a0f111d8/download |
bitstream.checksum.fl_str_mv |
099dcb9b18ada8a8ef0e9bf590263e2b 53ba37c88f3aa004f2201a85b74fd640 4afdbb8c545fd630ea7db775da747b2f d41d8cd98f00b204e9800998ecf8427e d41d8cd98f00b204e9800998ecf8427e c0fe10782d3e2994b7c028f47c86ff9e d891383ba02a4acc18e7bb99d103a340 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFVJM - Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM) |
repository.mail.fl_str_mv |
repositorio@ufvjm.edu.br |
_version_ |
1813710511850651648 |