Long term active layer monitoring at a warm-based glacier front from maritime Antarctica

Detalhes bibliográficos
Autor(a) principal: Schaefer, Carlos E. G. R.
Data de Publicação: 2017
Outros Autores: Fernandes, Raphael B. A., Francelino, Marcio R., Fernandes Filho, Elpidio I., Michel, Roberto F. M., Almeida, Ivan C. C., Andrade, André M. de, Bockheim, James G., Pereira, Thiago T. C.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: LOCUS Repositório Institucional da UFV
Texto Completo: https://doi.org/10.1016/j.catena.2016.07.031
http://www.locus.ufv.br/handle/123456789/23822
Resumo: Knowledge on active-layer dynamics and permafrost distribution is of especial importance in Maritime Antarctica, where dramatic climate warming occurred in the last decades. Few long-term studies of active-layer temperatures in this region, and no one focus on recently deglaciated areas under paraglacial conditions. This paper analyses the long-term soil thermal regime of a warm-based glacial front site located at Low Head, King George Island. The monitoring system consists of soil temperature probes connected to a datalogger that recorded data at hourly intervals. We calculated the thawing days (TD), freezing days (FD), number of isothermal days (ID), number of freeze-thaw days (FTD), thawing degree days (TDD), freezing degree days (FDD), and the apparent thermal diffusivity (ATD). The results indicate that active layer thermal regime at Low Head is similar to other periglacial environments from Maritime Antarctica, with differences associated with the influence from the nearby warm-based glacier. Surface temperatures show greater variations during the summer resulting in frequent freeze and thaw cycles, mainly (1 cm and 10 cm). The temperature profile during the studied period indicates that the active layer thickness reached a maximum of 106 cm on February 7th 2015. Soil temperature buffering was limited by the low snow cover, low soil moisture, and absence of vegetation. Based on the high interannual variability detected during the five years monitoring run, we stress that longer monitoring periods are necessary for a more detailed knowledge on how permafrost respond to climate changes in this rapidly warming zone.
id UFV_00191d0b5427a01a1078f73e20ee3cf7
oai_identifier_str oai:locus.ufv.br:123456789/23822
network_acronym_str UFV
network_name_str LOCUS Repositório Institucional da UFV
repository_id_str 2145
spelling Schaefer, Carlos E. G. R.Fernandes, Raphael B. A.Francelino, Marcio R.Fernandes Filho, Elpidio I.Michel, Roberto F. M.Almeida, Ivan C. C.Andrade, André M. deBockheim, James G.Pereira, Thiago T. C.2019-03-07T17:21:06Z2019-03-07T17:21:06Z2017-020341-8162https://doi.org/10.1016/j.catena.2016.07.031http://www.locus.ufv.br/handle/123456789/23822Knowledge on active-layer dynamics and permafrost distribution is of especial importance in Maritime Antarctica, where dramatic climate warming occurred in the last decades. Few long-term studies of active-layer temperatures in this region, and no one focus on recently deglaciated areas under paraglacial conditions. This paper analyses the long-term soil thermal regime of a warm-based glacial front site located at Low Head, King George Island. The monitoring system consists of soil temperature probes connected to a datalogger that recorded data at hourly intervals. We calculated the thawing days (TD), freezing days (FD), number of isothermal days (ID), number of freeze-thaw days (FTD), thawing degree days (TDD), freezing degree days (FDD), and the apparent thermal diffusivity (ATD). The results indicate that active layer thermal regime at Low Head is similar to other periglacial environments from Maritime Antarctica, with differences associated with the influence from the nearby warm-based glacier. Surface temperatures show greater variations during the summer resulting in frequent freeze and thaw cycles, mainly (1 cm and 10 cm). The temperature profile during the studied period indicates that the active layer thickness reached a maximum of 106 cm on February 7th 2015. Soil temperature buffering was limited by the low snow cover, low soil moisture, and absence of vegetation. Based on the high interannual variability detected during the five years monitoring run, we stress that longer monitoring periods are necessary for a more detailed knowledge on how permafrost respond to climate changes in this rapidly warming zone.engCATENAVolume 149, Part 2, Pages 572-581, February 2017Elsevier B. V.info:eu-repo/semantics/openAccessSoil thermal regimeClimate changeCryosolPermafrostPeriglacial regimeLong term active layer monitoring at a warm-based glacier front from maritime Antarcticainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALartigo.pdfartigo.pdfTexto completoapplication/pdf2363956https://locus.ufv.br//bitstream/123456789/23822/1/artigo.pdf5a8e63471679087875522469138b134cMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://locus.ufv.br//bitstream/123456789/23822/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52123456789/238222019-03-07 14:24:03.015oai:locus.ufv.br:123456789/23822Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452019-03-07T17:24:03LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false
dc.title.en.fl_str_mv Long term active layer monitoring at a warm-based glacier front from maritime Antarctica
title Long term active layer monitoring at a warm-based glacier front from maritime Antarctica
spellingShingle Long term active layer monitoring at a warm-based glacier front from maritime Antarctica
Schaefer, Carlos E. G. R.
Soil thermal regime
Climate change
Cryosol
Permafrost
Periglacial regime
title_short Long term active layer monitoring at a warm-based glacier front from maritime Antarctica
title_full Long term active layer monitoring at a warm-based glacier front from maritime Antarctica
title_fullStr Long term active layer monitoring at a warm-based glacier front from maritime Antarctica
title_full_unstemmed Long term active layer monitoring at a warm-based glacier front from maritime Antarctica
title_sort Long term active layer monitoring at a warm-based glacier front from maritime Antarctica
author Schaefer, Carlos E. G. R.
author_facet Schaefer, Carlos E. G. R.
Fernandes, Raphael B. A.
Francelino, Marcio R.
Fernandes Filho, Elpidio I.
Michel, Roberto F. M.
Almeida, Ivan C. C.
Andrade, André M. de
Bockheim, James G.
Pereira, Thiago T. C.
author_role author
author2 Fernandes, Raphael B. A.
Francelino, Marcio R.
Fernandes Filho, Elpidio I.
Michel, Roberto F. M.
Almeida, Ivan C. C.
Andrade, André M. de
Bockheim, James G.
Pereira, Thiago T. C.
author2_role author
author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Schaefer, Carlos E. G. R.
Fernandes, Raphael B. A.
Francelino, Marcio R.
Fernandes Filho, Elpidio I.
Michel, Roberto F. M.
Almeida, Ivan C. C.
Andrade, André M. de
Bockheim, James G.
Pereira, Thiago T. C.
dc.subject.pt-BR.fl_str_mv Soil thermal regime
Climate change
Cryosol
Permafrost
Periglacial regime
topic Soil thermal regime
Climate change
Cryosol
Permafrost
Periglacial regime
description Knowledge on active-layer dynamics and permafrost distribution is of especial importance in Maritime Antarctica, where dramatic climate warming occurred in the last decades. Few long-term studies of active-layer temperatures in this region, and no one focus on recently deglaciated areas under paraglacial conditions. This paper analyses the long-term soil thermal regime of a warm-based glacial front site located at Low Head, King George Island. The monitoring system consists of soil temperature probes connected to a datalogger that recorded data at hourly intervals. We calculated the thawing days (TD), freezing days (FD), number of isothermal days (ID), number of freeze-thaw days (FTD), thawing degree days (TDD), freezing degree days (FDD), and the apparent thermal diffusivity (ATD). The results indicate that active layer thermal regime at Low Head is similar to other periglacial environments from Maritime Antarctica, with differences associated with the influence from the nearby warm-based glacier. Surface temperatures show greater variations during the summer resulting in frequent freeze and thaw cycles, mainly (1 cm and 10 cm). The temperature profile during the studied period indicates that the active layer thickness reached a maximum of 106 cm on February 7th 2015. Soil temperature buffering was limited by the low snow cover, low soil moisture, and absence of vegetation. Based on the high interannual variability detected during the five years monitoring run, we stress that longer monitoring periods are necessary for a more detailed knowledge on how permafrost respond to climate changes in this rapidly warming zone.
publishDate 2017
dc.date.issued.fl_str_mv 2017-02
dc.date.accessioned.fl_str_mv 2019-03-07T17:21:06Z
dc.date.available.fl_str_mv 2019-03-07T17:21:06Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://doi.org/10.1016/j.catena.2016.07.031
http://www.locus.ufv.br/handle/123456789/23822
dc.identifier.issn.none.fl_str_mv 0341-8162
identifier_str_mv 0341-8162
url https://doi.org/10.1016/j.catena.2016.07.031
http://www.locus.ufv.br/handle/123456789/23822
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartofseries.pt-BR.fl_str_mv Volume 149, Part 2, Pages 572-581, February 2017
dc.rights.driver.fl_str_mv Elsevier B. V.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Elsevier B. V.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv CATENA
publisher.none.fl_str_mv CATENA
dc.source.none.fl_str_mv reponame:LOCUS Repositório Institucional da UFV
instname:Universidade Federal de Viçosa (UFV)
instacron:UFV
instname_str Universidade Federal de Viçosa (UFV)
instacron_str UFV
institution UFV
reponame_str LOCUS Repositório Institucional da UFV
collection LOCUS Repositório Institucional da UFV
bitstream.url.fl_str_mv https://locus.ufv.br//bitstream/123456789/23822/1/artigo.pdf
https://locus.ufv.br//bitstream/123456789/23822/2/license.txt
bitstream.checksum.fl_str_mv 5a8e63471679087875522469138b134c
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)
repository.mail.fl_str_mv fabiojreis@ufv.br
_version_ 1801213007495168000