Computação de alto desempenho na seleção genômica

Detalhes bibliográficos
Autor(a) principal: Lagrotta, Marcos Rodrigues
Data de Publicação: 2012
Tipo de documento: Tese
Idioma: por
Título da fonte: LOCUS Repositório Institucional da UFV
Texto Completo: http://locus.ufv.br/handle/123456789/1804
Resumo: Parallel computing has been growing in recent years due to the lower cost of computers and the exponential growth of databases. The parallel processing involves performing multiple tasks simultaneously on different processors. In the context of genomic selection, the large number of genetic markers used in the analyzes as well as the high computational demand of Bayesian models based on methods of Markov Chain Monte Carlo makes that certain analyzes have weeks or months of runtime. Thus parallel computing is a natural solution to this problem. The method used for analysis was BayesCπ, which has only the Gibbs sampling steps. The algorithm was initially written in a sequential manner using FORTRAN. It was studied two parallelization strategies. The first involved the analysis of multiple parallel chains being recommended in the situation that the burn-in is not long. The second strategy is relative to the parallelization of the chain itself, being indicated for cases in which the burn-in time is too long. It was used the MPI library and the packet OpenMPI associated to the gfortran compiler for this purpose. The computations were performed on a personal computer, with six processing cores of 3.3 GHz and 16 GB of RAM (Random Access Memory) and a cluster with 120 processors of 2.77 GHz. Simulated data for two traits of dairy cattle, referring to 10,000 markers and 4,100 individuals, were used. In the personal computer, the sequential algorithm was processed at 77.29 hours and by using parallel multiple chains the processing was almost five times faster with six cores. The performance ratio between parallel and sequential algorithms was higher in the cluster, because its memory architecture scales better with the number of processors in use than the shared memory architecture of the personal computer. The second parallelization strategy presented a performance gain of only 19% with two processors. Using more processors the processing speed was diminishing slowly. This strategy applies only on systems with shared memory architecture, due to the high overhead generated by the intense exchange of information and tasks synchronization. Therefore parallel computing is a technique of fundamental importance for genomic selection and it will be more significant in coming years due to rapid growth of databases. More efficient strategies for parallelization of the chain itself must be developed, because in situations where the burn-in is too long the processing of multiple chains in parallel is not recommended. The ideal would be that these new approaches have good performance in systems with distributed memory architecture (clusters).
id UFV_0548eda0e114db5821351acb2a2a2b3f
oai_identifier_str oai:locus.ufv.br:123456789/1804
network_acronym_str UFV
network_name_str LOCUS Repositório Institucional da UFV
repository_id_str 2145
spelling Lagrotta, Marcos Rodrigueshttp://lattes.cnpq.br/5176630154717355Torres, Robledo de Almeidahttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4783366H0Euclydes, Ricardo Fredericohttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4788533U6Silva, Fabyano Fonseca ehttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4766260Z2Souza, Gustavo Henrique dehttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4760298P6Goulart, Carlos de Castrohttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4784106Y92015-03-26T12:54:44Z2013-04-222015-03-26T12:54:44Z2012-07-27LAGROTTA, Marcos Rodrigues. High performance computing in genomic selection. 2012. 81 f. Tese (Doutorado em Genética e Melhoramento de Animais Domésticos; Nutrição e Alimentação Animal; Pastagens e Forragicul) - Universidade Federal de Viçosa, Viçosa, 2012.http://locus.ufv.br/handle/123456789/1804Parallel computing has been growing in recent years due to the lower cost of computers and the exponential growth of databases. The parallel processing involves performing multiple tasks simultaneously on different processors. In the context of genomic selection, the large number of genetic markers used in the analyzes as well as the high computational demand of Bayesian models based on methods of Markov Chain Monte Carlo makes that certain analyzes have weeks or months of runtime. Thus parallel computing is a natural solution to this problem. The method used for analysis was BayesCπ, which has only the Gibbs sampling steps. The algorithm was initially written in a sequential manner using FORTRAN. It was studied two parallelization strategies. The first involved the analysis of multiple parallel chains being recommended in the situation that the burn-in is not long. The second strategy is relative to the parallelization of the chain itself, being indicated for cases in which the burn-in time is too long. It was used the MPI library and the packet OpenMPI associated to the gfortran compiler for this purpose. The computations were performed on a personal computer, with six processing cores of 3.3 GHz and 16 GB of RAM (Random Access Memory) and a cluster with 120 processors of 2.77 GHz. Simulated data for two traits of dairy cattle, referring to 10,000 markers and 4,100 individuals, were used. In the personal computer, the sequential algorithm was processed at 77.29 hours and by using parallel multiple chains the processing was almost five times faster with six cores. The performance ratio between parallel and sequential algorithms was higher in the cluster, because its memory architecture scales better with the number of processors in use than the shared memory architecture of the personal computer. The second parallelization strategy presented a performance gain of only 19% with two processors. Using more processors the processing speed was diminishing slowly. This strategy applies only on systems with shared memory architecture, due to the high overhead generated by the intense exchange of information and tasks synchronization. Therefore parallel computing is a technique of fundamental importance for genomic selection and it will be more significant in coming years due to rapid growth of databases. More efficient strategies for parallelization of the chain itself must be developed, because in situations where the burn-in is too long the processing of multiple chains in parallel is not recommended. The ideal would be that these new approaches have good performance in systems with distributed memory architecture (clusters).A computação paralela vem crescendo nos últimos anos em virtude do menor custo dos computadores e do aumento exponencial dos bancos de dados. O processamento em paralelo envolve a execução de múltiplas tarefas simultaneamente em diferentes processadores. No contexto da seleção genômica, o grande número de marcadores genéticos utilizado nas análises, bem como a grande demanda computacional dos modelos bayesianos fundamentados nos métodos de Monte Carlo Via Cadeias de Markov, faz com que certas análises despendem semanas ou meses de processamento. Assim, a computação paralela representa uma solução natural a este problema. O método usado para análise foi o BayesCπ, o qual possui apenas passos do Amostrador de Gibbs. O algoritmo foi inicialmente escrito na forma sequencial usando o FORTRAN. Duas estratégias de paralelização foram então estudadas. A primeira envolveu a análise de múltiplas cadeias em paralelo, sendo recomendada na situação em que o burn-in não seja longo. A segunda estratégia referiu-se à paralelização da própria cadeia, sendo indicada para situações em que o burn-in é muito longo. Utilizou-se a biblioteca MPI e o pacote OpenMPI associado ao compilador gfortran para tal propósito. As computações foram realizadas em um computador pessoal, com seis núcleos de processamento de 3,3 GHz e 16 GB de memória RAM e em um cluster com 120 processadores de 2,77 GHz. Foram utilizados dados simulados para duas características produtivas de bovinos de leite, referentes a 10.000 marcadores e 4.100 indivíduos. No computador pessoal, o algoritmo sequencial foi processado em 77,29 horas e ao usar múltiplas cadeias em paralelo o processamento foi quase cinco vezes mais rápido com seis núcleos de processamento. A relação de desempenho entre o algoritmo paralelo e o sequencial foi maior no cluster, pois a sua arquitetura de memória escalona melhor com o número de processadores em uso do que a arquitetura de memória compartilhada do computador pessoal. A segunda estratégia de paralelização apresentou um ganho de desempenho de apenas 19% com dois processadores. Contudo, usando mais processadores não houve melhora de desempenho. Esta estratégia só se aplica em sistemas com arquitetura de memória compartilhada, devido ao elevado overhead (sobrecarga) gerado pela intensa troca de informações e sincronização das tarefas. Conclui-se que a computação paralela é uma técnica de fundamental importância para a seleção genômica, e isto será mais expressivo nos próximos anos devido ao rápido crescimento dos bancos de dados. Estratégias mais eficientes de paralelização da própria cadeia devem ser desenvolvidas, visto que nas situações em que o burn-in é muito longo o processamento de múltiplas cadeias em paralelo não é recomendado. O ideal seria que estas novas abordagens apresentassem bom desempenho em sistemas com arquitetura de memória distribuída (clusters).Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorapplication/pdfporUniversidade Federal de ViçosaDoutorado em ZootecniaUFVBRGenética e Melhoramento de Animais Domésticos; Nutrição e Alimentação Animal; Pastagens e ForragiculSeleção genômicaConfiabilidadeGado de leiteGenomic selectionTrustworthinessDairyCNPQ::CIENCIAS AGRARIAS::ZOOTECNIA::GENETICA E MELHORAMENTO DOS ANIMAIS DOMESTICOSComputação de alto desempenho na seleção genômicaHigh performance computing in genomic selectioninfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/openAccessreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALtexto completo.pdfapplication/pdf1280540https://locus.ufv.br//bitstream/123456789/1804/1/texto%20completo.pdf4f9f576360bdfa9897a51ca9040659b2MD51TEXTtexto completo.pdf.txttexto completo.pdf.txtExtracted texttext/plain140865https://locus.ufv.br//bitstream/123456789/1804/2/texto%20completo.pdf.txt11fca14a937ac53fae2e0060a45ea7f1MD52THUMBNAILtexto completo.pdf.jpgtexto completo.pdf.jpgIM Thumbnailimage/jpeg3632https://locus.ufv.br//bitstream/123456789/1804/3/texto%20completo.pdf.jpg844db1d0e7dd7a4d04cc7470bd30b28fMD53123456789/18042016-04-07 23:13:31.078oai:locus.ufv.br:123456789/1804Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452016-04-08T02:13:31LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false
dc.title.por.fl_str_mv Computação de alto desempenho na seleção genômica
dc.title.alternative.eng.fl_str_mv High performance computing in genomic selection
title Computação de alto desempenho na seleção genômica
spellingShingle Computação de alto desempenho na seleção genômica
Lagrotta, Marcos Rodrigues
Seleção genômica
Confiabilidade
Gado de leite
Genomic selection
Trustworthiness
Dairy
CNPQ::CIENCIAS AGRARIAS::ZOOTECNIA::GENETICA E MELHORAMENTO DOS ANIMAIS DOMESTICOS
title_short Computação de alto desempenho na seleção genômica
title_full Computação de alto desempenho na seleção genômica
title_fullStr Computação de alto desempenho na seleção genômica
title_full_unstemmed Computação de alto desempenho na seleção genômica
title_sort Computação de alto desempenho na seleção genômica
author Lagrotta, Marcos Rodrigues
author_facet Lagrotta, Marcos Rodrigues
author_role author
dc.contributor.authorLattes.por.fl_str_mv http://lattes.cnpq.br/5176630154717355
dc.contributor.author.fl_str_mv Lagrotta, Marcos Rodrigues
dc.contributor.advisor-co1.fl_str_mv Torres, Robledo de Almeida
dc.contributor.advisor-co1Lattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4783366H0
dc.contributor.advisor1.fl_str_mv Euclydes, Ricardo Frederico
dc.contributor.advisor1Lattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4788533U6
dc.contributor.referee1.fl_str_mv Silva, Fabyano Fonseca e
dc.contributor.referee1Lattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4766260Z2
dc.contributor.referee2.fl_str_mv Souza, Gustavo Henrique de
dc.contributor.referee2Lattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4760298P6
dc.contributor.referee3.fl_str_mv Goulart, Carlos de Castro
dc.contributor.referee3Lattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4784106Y9
contributor_str_mv Torres, Robledo de Almeida
Euclydes, Ricardo Frederico
Silva, Fabyano Fonseca e
Souza, Gustavo Henrique de
Goulart, Carlos de Castro
dc.subject.por.fl_str_mv Seleção genômica
Confiabilidade
Gado de leite
topic Seleção genômica
Confiabilidade
Gado de leite
Genomic selection
Trustworthiness
Dairy
CNPQ::CIENCIAS AGRARIAS::ZOOTECNIA::GENETICA E MELHORAMENTO DOS ANIMAIS DOMESTICOS
dc.subject.eng.fl_str_mv Genomic selection
Trustworthiness
Dairy
dc.subject.cnpq.fl_str_mv CNPQ::CIENCIAS AGRARIAS::ZOOTECNIA::GENETICA E MELHORAMENTO DOS ANIMAIS DOMESTICOS
description Parallel computing has been growing in recent years due to the lower cost of computers and the exponential growth of databases. The parallel processing involves performing multiple tasks simultaneously on different processors. In the context of genomic selection, the large number of genetic markers used in the analyzes as well as the high computational demand of Bayesian models based on methods of Markov Chain Monte Carlo makes that certain analyzes have weeks or months of runtime. Thus parallel computing is a natural solution to this problem. The method used for analysis was BayesCπ, which has only the Gibbs sampling steps. The algorithm was initially written in a sequential manner using FORTRAN. It was studied two parallelization strategies. The first involved the analysis of multiple parallel chains being recommended in the situation that the burn-in is not long. The second strategy is relative to the parallelization of the chain itself, being indicated for cases in which the burn-in time is too long. It was used the MPI library and the packet OpenMPI associated to the gfortran compiler for this purpose. The computations were performed on a personal computer, with six processing cores of 3.3 GHz and 16 GB of RAM (Random Access Memory) and a cluster with 120 processors of 2.77 GHz. Simulated data for two traits of dairy cattle, referring to 10,000 markers and 4,100 individuals, were used. In the personal computer, the sequential algorithm was processed at 77.29 hours and by using parallel multiple chains the processing was almost five times faster with six cores. The performance ratio between parallel and sequential algorithms was higher in the cluster, because its memory architecture scales better with the number of processors in use than the shared memory architecture of the personal computer. The second parallelization strategy presented a performance gain of only 19% with two processors. Using more processors the processing speed was diminishing slowly. This strategy applies only on systems with shared memory architecture, due to the high overhead generated by the intense exchange of information and tasks synchronization. Therefore parallel computing is a technique of fundamental importance for genomic selection and it will be more significant in coming years due to rapid growth of databases. More efficient strategies for parallelization of the chain itself must be developed, because in situations where the burn-in is too long the processing of multiple chains in parallel is not recommended. The ideal would be that these new approaches have good performance in systems with distributed memory architecture (clusters).
publishDate 2012
dc.date.issued.fl_str_mv 2012-07-27
dc.date.available.fl_str_mv 2013-04-22
2015-03-26T12:54:44Z
dc.date.accessioned.fl_str_mv 2015-03-26T12:54:44Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv LAGROTTA, Marcos Rodrigues. High performance computing in genomic selection. 2012. 81 f. Tese (Doutorado em Genética e Melhoramento de Animais Domésticos; Nutrição e Alimentação Animal; Pastagens e Forragicul) - Universidade Federal de Viçosa, Viçosa, 2012.
dc.identifier.uri.fl_str_mv http://locus.ufv.br/handle/123456789/1804
identifier_str_mv LAGROTTA, Marcos Rodrigues. High performance computing in genomic selection. 2012. 81 f. Tese (Doutorado em Genética e Melhoramento de Animais Domésticos; Nutrição e Alimentação Animal; Pastagens e Forragicul) - Universidade Federal de Viçosa, Viçosa, 2012.
url http://locus.ufv.br/handle/123456789/1804
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Viçosa
dc.publisher.program.fl_str_mv Doutorado em Zootecnia
dc.publisher.initials.fl_str_mv UFV
dc.publisher.country.fl_str_mv BR
dc.publisher.department.fl_str_mv Genética e Melhoramento de Animais Domésticos; Nutrição e Alimentação Animal; Pastagens e Forragicul
publisher.none.fl_str_mv Universidade Federal de Viçosa
dc.source.none.fl_str_mv reponame:LOCUS Repositório Institucional da UFV
instname:Universidade Federal de Viçosa (UFV)
instacron:UFV
instname_str Universidade Federal de Viçosa (UFV)
instacron_str UFV
institution UFV
reponame_str LOCUS Repositório Institucional da UFV
collection LOCUS Repositório Institucional da UFV
bitstream.url.fl_str_mv https://locus.ufv.br//bitstream/123456789/1804/1/texto%20completo.pdf
https://locus.ufv.br//bitstream/123456789/1804/2/texto%20completo.pdf.txt
https://locus.ufv.br//bitstream/123456789/1804/3/texto%20completo.pdf.jpg
bitstream.checksum.fl_str_mv 4f9f576360bdfa9897a51ca9040659b2
11fca14a937ac53fae2e0060a45ea7f1
844db1d0e7dd7a4d04cc7470bd30b28f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)
repository.mail.fl_str_mv fabiojreis@ufv.br
_version_ 1801212866551873536