Biochemical responses of common bean to white mold potentiated by phosphites

Detalhes bibliográficos
Autor(a) principal: Fagundes-Nacarath, I. R. F.
Data de Publicação: 2018
Outros Autores: Debona, D., Oliveira, A. T. H., Hawerroth, C., Rodrigues, F. A.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: LOCUS Repositório Institucional da UFV
Texto Completo: https://doi.org/10.1016/j.plaphy.2018.09.016
http://www.locus.ufv.br/handle/123456789/23466
Resumo: Considering that the mechanisms for phosphite-afforded disease control remain elusive, this study investigated whether zinc (Zn) and copper (Cu) phosphites could possible potentiate common bean resistance to white mold, caused by Sclerotinia sclerotiorum, through the stimulation of biochemical defence responses. Lesion area and disease severity were decreased by phosphites spray, but Zn phosphite outcompeted Cu phosphite. Histopathological observations revealed fewer fungal hyphae and less collapse of the mesophyll cells in the Zn and Cu phosphite-sprayed plants compared to water-sprayed ones. The S. sclerotiorum-triggered accumulation of reactive oxygen species, oxalic acid (a fungal secreted toxin) and malondialdehyde (an indicator of cellular damage) were constrained as a result of Zn and Cu phosphites spray. Activities of antioxidant enzymes (superoxide dismutase, peroxidase, ascorbate peroxidase and glutathione-S-transferase at 12 h after inoculation (hai) and catalase at 60 and 84 hai) were higher for Zn and Cu phosphites-sprayed plants than for water-sprayed ones. Activities of defence-related enzymes chitinase (CHI) at 12 hai, β-1,3-glucanase (GLU) and polyphenoloxidase (PPO) were higher at 12–84 hai for Zn, and Cu phosphites sprayed plants, phenylalanine ammonia-lyase at 36–84 hai for the Zn phosphite sprayed ones, CHI at 12–36 hai, GLU at 12–60 hai, PPO at 36 hai and PAL and lipoxygenase at 12 hai for the Cu phosphite sprayed ones upon inoculation with S. sclerotiorum relative to their water-sprayed counterparts. Concentrations of total soluble phenols and lignin-thioglycolic acid derivatives were not affected by Cu phosphite spray on infected plants but were higher and lower, respectively, for Zn phosphite sprayed plants at 60 hai compared to water-sprayed ones. Taken together, the findings from the present study shed light on the biochemical defence mechanisms involved in the Zn and Cu phosphites-mediated suppression of white mold in common bean.
id UFV_07e93ce5b09f375f78e9d1e20c1df93f
oai_identifier_str oai:locus.ufv.br:123456789/23466
network_acronym_str UFV
network_name_str LOCUS Repositório Institucional da UFV
repository_id_str 2145
spelling Fagundes-Nacarath, I. R. F.Debona, D.Oliveira, A. T. H.Hawerroth, C.Rodrigues, F. A.2019-02-11T12:36:09Z2019-02-11T12:36:09Z2018-110981-9428https://doi.org/10.1016/j.plaphy.2018.09.016http://www.locus.ufv.br/handle/123456789/23466Considering that the mechanisms for phosphite-afforded disease control remain elusive, this study investigated whether zinc (Zn) and copper (Cu) phosphites could possible potentiate common bean resistance to white mold, caused by Sclerotinia sclerotiorum, through the stimulation of biochemical defence responses. Lesion area and disease severity were decreased by phosphites spray, but Zn phosphite outcompeted Cu phosphite. Histopathological observations revealed fewer fungal hyphae and less collapse of the mesophyll cells in the Zn and Cu phosphite-sprayed plants compared to water-sprayed ones. The S. sclerotiorum-triggered accumulation of reactive oxygen species, oxalic acid (a fungal secreted toxin) and malondialdehyde (an indicator of cellular damage) were constrained as a result of Zn and Cu phosphites spray. Activities of antioxidant enzymes (superoxide dismutase, peroxidase, ascorbate peroxidase and glutathione-S-transferase at 12 h after inoculation (hai) and catalase at 60 and 84 hai) were higher for Zn and Cu phosphites-sprayed plants than for water-sprayed ones. Activities of defence-related enzymes chitinase (CHI) at 12 hai, β-1,3-glucanase (GLU) and polyphenoloxidase (PPO) were higher at 12–84 hai for Zn, and Cu phosphites sprayed plants, phenylalanine ammonia-lyase at 36–84 hai for the Zn phosphite sprayed ones, CHI at 12–36 hai, GLU at 12–60 hai, PPO at 36 hai and PAL and lipoxygenase at 12 hai for the Cu phosphite sprayed ones upon inoculation with S. sclerotiorum relative to their water-sprayed counterparts. Concentrations of total soluble phenols and lignin-thioglycolic acid derivatives were not affected by Cu phosphite spray on infected plants but were higher and lower, respectively, for Zn phosphite sprayed plants at 60 hai compared to water-sprayed ones. Taken together, the findings from the present study shed light on the biochemical defence mechanisms involved in the Zn and Cu phosphites-mediated suppression of white mold in common bean.engPlant Physiology and BiochemistryVolume 132, Pages 308-319, November 20182018 Elsevier Masson SAS. All rights reserved.info:eu-repo/semantics/openAccessPhaseolus vulgarisSclerotinia sclerotiorumAntioxidant systemDefence-related enzymesBiochemical responses of common bean to white mold potentiated by phosphitesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALartigo.pdfartigo.pdfTexto completoapplication/pdf2618076https://locus.ufv.br//bitstream/123456789/23466/1/artigo.pdf9b4dc6cbbdd6720657f588b3794bcc4dMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://locus.ufv.br//bitstream/123456789/23466/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52123456789/234662019-02-11 10:08:20.705oai:locus.ufv.br:123456789/23466Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452019-02-11T13:08:20LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false
dc.title.en.fl_str_mv Biochemical responses of common bean to white mold potentiated by phosphites
title Biochemical responses of common bean to white mold potentiated by phosphites
spellingShingle Biochemical responses of common bean to white mold potentiated by phosphites
Fagundes-Nacarath, I. R. F.
Phaseolus vulgaris
Sclerotinia sclerotiorum
Antioxidant system
Defence-related enzymes
title_short Biochemical responses of common bean to white mold potentiated by phosphites
title_full Biochemical responses of common bean to white mold potentiated by phosphites
title_fullStr Biochemical responses of common bean to white mold potentiated by phosphites
title_full_unstemmed Biochemical responses of common bean to white mold potentiated by phosphites
title_sort Biochemical responses of common bean to white mold potentiated by phosphites
author Fagundes-Nacarath, I. R. F.
author_facet Fagundes-Nacarath, I. R. F.
Debona, D.
Oliveira, A. T. H.
Hawerroth, C.
Rodrigues, F. A.
author_role author
author2 Debona, D.
Oliveira, A. T. H.
Hawerroth, C.
Rodrigues, F. A.
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Fagundes-Nacarath, I. R. F.
Debona, D.
Oliveira, A. T. H.
Hawerroth, C.
Rodrigues, F. A.
dc.subject.pt-BR.fl_str_mv Phaseolus vulgaris
Sclerotinia sclerotiorum
Antioxidant system
Defence-related enzymes
topic Phaseolus vulgaris
Sclerotinia sclerotiorum
Antioxidant system
Defence-related enzymes
description Considering that the mechanisms for phosphite-afforded disease control remain elusive, this study investigated whether zinc (Zn) and copper (Cu) phosphites could possible potentiate common bean resistance to white mold, caused by Sclerotinia sclerotiorum, through the stimulation of biochemical defence responses. Lesion area and disease severity were decreased by phosphites spray, but Zn phosphite outcompeted Cu phosphite. Histopathological observations revealed fewer fungal hyphae and less collapse of the mesophyll cells in the Zn and Cu phosphite-sprayed plants compared to water-sprayed ones. The S. sclerotiorum-triggered accumulation of reactive oxygen species, oxalic acid (a fungal secreted toxin) and malondialdehyde (an indicator of cellular damage) were constrained as a result of Zn and Cu phosphites spray. Activities of antioxidant enzymes (superoxide dismutase, peroxidase, ascorbate peroxidase and glutathione-S-transferase at 12 h after inoculation (hai) and catalase at 60 and 84 hai) were higher for Zn and Cu phosphites-sprayed plants than for water-sprayed ones. Activities of defence-related enzymes chitinase (CHI) at 12 hai, β-1,3-glucanase (GLU) and polyphenoloxidase (PPO) were higher at 12–84 hai for Zn, and Cu phosphites sprayed plants, phenylalanine ammonia-lyase at 36–84 hai for the Zn phosphite sprayed ones, CHI at 12–36 hai, GLU at 12–60 hai, PPO at 36 hai and PAL and lipoxygenase at 12 hai for the Cu phosphite sprayed ones upon inoculation with S. sclerotiorum relative to their water-sprayed counterparts. Concentrations of total soluble phenols and lignin-thioglycolic acid derivatives were not affected by Cu phosphite spray on infected plants but were higher and lower, respectively, for Zn phosphite sprayed plants at 60 hai compared to water-sprayed ones. Taken together, the findings from the present study shed light on the biochemical defence mechanisms involved in the Zn and Cu phosphites-mediated suppression of white mold in common bean.
publishDate 2018
dc.date.issued.fl_str_mv 2018-11
dc.date.accessioned.fl_str_mv 2019-02-11T12:36:09Z
dc.date.available.fl_str_mv 2019-02-11T12:36:09Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://doi.org/10.1016/j.plaphy.2018.09.016
http://www.locus.ufv.br/handle/123456789/23466
dc.identifier.issn.none.fl_str_mv 0981-9428
identifier_str_mv 0981-9428
url https://doi.org/10.1016/j.plaphy.2018.09.016
http://www.locus.ufv.br/handle/123456789/23466
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartofseries.pt-BR.fl_str_mv Volume 132, Pages 308-319, November 2018
dc.rights.driver.fl_str_mv 2018 Elsevier Masson SAS. All rights reserved.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv 2018 Elsevier Masson SAS. All rights reserved.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Plant Physiology and Biochemistry
publisher.none.fl_str_mv Plant Physiology and Biochemistry
dc.source.none.fl_str_mv reponame:LOCUS Repositório Institucional da UFV
instname:Universidade Federal de Viçosa (UFV)
instacron:UFV
instname_str Universidade Federal de Viçosa (UFV)
instacron_str UFV
institution UFV
reponame_str LOCUS Repositório Institucional da UFV
collection LOCUS Repositório Institucional da UFV
bitstream.url.fl_str_mv https://locus.ufv.br//bitstream/123456789/23466/1/artigo.pdf
https://locus.ufv.br//bitstream/123456789/23466/2/license.txt
bitstream.checksum.fl_str_mv 9b4dc6cbbdd6720657f588b3794bcc4d
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)
repository.mail.fl_str_mv fabiojreis@ufv.br
_version_ 1801212985778110464