Silicon suppresses tan spot development on wheat infected by Pyrenophora tritici-repentis
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | LOCUS Repositório Institucional da UFV |
Texto Completo: | https://doi.org/10.1007/s10658-017-1251-4 http://www.locus.ufv.br/handle/123456789/22729 |
Resumo: | Tan spot caused by Pyrenophora tritici-repentis is the main foliar diseases of wheat in Brazil. The effect of silicon (Si) on the components of resistance of a susceptible (Fundacep Horizonte) and a moderately resistant (Quartzo) wheat cultivar was studied in a controlled environment. Silicon was supplied as calcium silicate in the soil 30 days before sowing. At the booting stage, a conidial suspension of the fungus was sprayed onto the flag leaves of potted plants, which were incubated under moist conditions for 48 h. Afterwards, inoculated leaves were assessed for: incubation period (IP), infection efficiency (IE), area under lesion size curve (AULSC), lesion size (LS), severity (SEV) and area under severity curve (AUSC). Foliar Si concentrations were quantified at the end of the evaluations. Si supply to plants increased leaf Si concentration in 233% for Fundacep Horizonte (from 4.8 to 16.0 g kg−1 of dry matter) and 211% for Quartzo (from 5.3 to 16.5 g kg−1 of dry matter). In the Si + treatments, IP was longer by 24 and 17 h, IE declined by 53.5 and 65.5%, LS (at 264 h after inoculation) by 4.6 mm (from 9.5 to 4.9 mm) and 5.9 mm (from 8.2 to 2.3 mm), and SEV by 53% (from 54.4 to 18.8%) and 88% (from 47.7 to 5.5%) respectively, for the Fundacep Horizonte and Quartzo cultivars. The Si x cultivar interaction was not significant for AULSC and AUSC, and these variables were reduced by 55.8 and 80.8%, respectively, in plants supplied with Si. In conclusion, Si enhanced the resistance of wheat plants to tan spot development by affecting several resistance components, regardless of the resistance level of the cultivar. However, the greatest reduction in tan spot development by Si supply was observed when using a moderately resistant cultivar. |
id |
UFV_11bf75f0a0491fb5d82e77994e2e35cf |
---|---|
oai_identifier_str |
oai:locus.ufv.br:123456789/22729 |
network_acronym_str |
UFV |
network_name_str |
LOCUS Repositório Institucional da UFV |
repository_id_str |
2145 |
spelling |
Del Ponte, Emerson MedeirosDallagnol, Leandro JoséForcelini, Carlos AlbertoDorneles, Keilor da RosaPazdiora, Paulo Cesar2018-12-10T17:00:37Z2018-12-10T17:00:37Z2018-011573-8469https://doi.org/10.1007/s10658-017-1251-4http://www.locus.ufv.br/handle/123456789/22729Tan spot caused by Pyrenophora tritici-repentis is the main foliar diseases of wheat in Brazil. The effect of silicon (Si) on the components of resistance of a susceptible (Fundacep Horizonte) and a moderately resistant (Quartzo) wheat cultivar was studied in a controlled environment. Silicon was supplied as calcium silicate in the soil 30 days before sowing. At the booting stage, a conidial suspension of the fungus was sprayed onto the flag leaves of potted plants, which were incubated under moist conditions for 48 h. Afterwards, inoculated leaves were assessed for: incubation period (IP), infection efficiency (IE), area under lesion size curve (AULSC), lesion size (LS), severity (SEV) and area under severity curve (AUSC). Foliar Si concentrations were quantified at the end of the evaluations. Si supply to plants increased leaf Si concentration in 233% for Fundacep Horizonte (from 4.8 to 16.0 g kg−1 of dry matter) and 211% for Quartzo (from 5.3 to 16.5 g kg−1 of dry matter). In the Si + treatments, IP was longer by 24 and 17 h, IE declined by 53.5 and 65.5%, LS (at 264 h after inoculation) by 4.6 mm (from 9.5 to 4.9 mm) and 5.9 mm (from 8.2 to 2.3 mm), and SEV by 53% (from 54.4 to 18.8%) and 88% (from 47.7 to 5.5%) respectively, for the Fundacep Horizonte and Quartzo cultivars. The Si x cultivar interaction was not significant for AULSC and AUSC, and these variables were reduced by 55.8 and 80.8%, respectively, in plants supplied with Si. In conclusion, Si enhanced the resistance of wheat plants to tan spot development by affecting several resistance components, regardless of the resistance level of the cultivar. However, the greatest reduction in tan spot development by Si supply was observed when using a moderately resistant cultivar.engEuropean Journal of Plant PathologyVolume 150, Issue 1, Pages 49– 56, January 2018Koninklijke Nederlandse Planteziektenkundige Vereniging 2017info:eu-repo/semantics/openAccessDreshslera tritici-repentisTriticum aestivumCalcium silicateEpidemiologyTan spotSilicon suppresses tan spot development on wheat infected by Pyrenophora tritici-repentisinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALartigo.pdfartigo.pdfTexto completoapplication/pdf1538726https://locus.ufv.br//bitstream/123456789/22729/1/artigo.pdf531b9ff496c1c3808b81f7f941081d2cMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://locus.ufv.br//bitstream/123456789/22729/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52123456789/227292018-12-10 14:11:48.889oai:locus.ufv.br:123456789/22729Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452018-12-10T17:11:48LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false |
dc.title.en.fl_str_mv |
Silicon suppresses tan spot development on wheat infected by Pyrenophora tritici-repentis |
title |
Silicon suppresses tan spot development on wheat infected by Pyrenophora tritici-repentis |
spellingShingle |
Silicon suppresses tan spot development on wheat infected by Pyrenophora tritici-repentis Del Ponte, Emerson Medeiros Dreshslera tritici-repentis Triticum aestivum Calcium silicate Epidemiology Tan spot |
title_short |
Silicon suppresses tan spot development on wheat infected by Pyrenophora tritici-repentis |
title_full |
Silicon suppresses tan spot development on wheat infected by Pyrenophora tritici-repentis |
title_fullStr |
Silicon suppresses tan spot development on wheat infected by Pyrenophora tritici-repentis |
title_full_unstemmed |
Silicon suppresses tan spot development on wheat infected by Pyrenophora tritici-repentis |
title_sort |
Silicon suppresses tan spot development on wheat infected by Pyrenophora tritici-repentis |
author |
Del Ponte, Emerson Medeiros |
author_facet |
Del Ponte, Emerson Medeiros Dallagnol, Leandro José Forcelini, Carlos Alberto Dorneles, Keilor da Rosa Pazdiora, Paulo Cesar |
author_role |
author |
author2 |
Dallagnol, Leandro José Forcelini, Carlos Alberto Dorneles, Keilor da Rosa Pazdiora, Paulo Cesar |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Del Ponte, Emerson Medeiros Dallagnol, Leandro José Forcelini, Carlos Alberto Dorneles, Keilor da Rosa Pazdiora, Paulo Cesar |
dc.subject.pt-BR.fl_str_mv |
Dreshslera tritici-repentis Triticum aestivum Calcium silicate Epidemiology Tan spot |
topic |
Dreshslera tritici-repentis Triticum aestivum Calcium silicate Epidemiology Tan spot |
description |
Tan spot caused by Pyrenophora tritici-repentis is the main foliar diseases of wheat in Brazil. The effect of silicon (Si) on the components of resistance of a susceptible (Fundacep Horizonte) and a moderately resistant (Quartzo) wheat cultivar was studied in a controlled environment. Silicon was supplied as calcium silicate in the soil 30 days before sowing. At the booting stage, a conidial suspension of the fungus was sprayed onto the flag leaves of potted plants, which were incubated under moist conditions for 48 h. Afterwards, inoculated leaves were assessed for: incubation period (IP), infection efficiency (IE), area under lesion size curve (AULSC), lesion size (LS), severity (SEV) and area under severity curve (AUSC). Foliar Si concentrations were quantified at the end of the evaluations. Si supply to plants increased leaf Si concentration in 233% for Fundacep Horizonte (from 4.8 to 16.0 g kg−1 of dry matter) and 211% for Quartzo (from 5.3 to 16.5 g kg−1 of dry matter). In the Si + treatments, IP was longer by 24 and 17 h, IE declined by 53.5 and 65.5%, LS (at 264 h after inoculation) by 4.6 mm (from 9.5 to 4.9 mm) and 5.9 mm (from 8.2 to 2.3 mm), and SEV by 53% (from 54.4 to 18.8%) and 88% (from 47.7 to 5.5%) respectively, for the Fundacep Horizonte and Quartzo cultivars. The Si x cultivar interaction was not significant for AULSC and AUSC, and these variables were reduced by 55.8 and 80.8%, respectively, in plants supplied with Si. In conclusion, Si enhanced the resistance of wheat plants to tan spot development by affecting several resistance components, regardless of the resistance level of the cultivar. However, the greatest reduction in tan spot development by Si supply was observed when using a moderately resistant cultivar. |
publishDate |
2018 |
dc.date.accessioned.fl_str_mv |
2018-12-10T17:00:37Z |
dc.date.available.fl_str_mv |
2018-12-10T17:00:37Z |
dc.date.issued.fl_str_mv |
2018-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://doi.org/10.1007/s10658-017-1251-4 http://www.locus.ufv.br/handle/123456789/22729 |
dc.identifier.issn.none.fl_str_mv |
1573-8469 |
identifier_str_mv |
1573-8469 |
url |
https://doi.org/10.1007/s10658-017-1251-4 http://www.locus.ufv.br/handle/123456789/22729 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofseries.pt-BR.fl_str_mv |
Volume 150, Issue 1, Pages 49– 56, January 2018 |
dc.rights.driver.fl_str_mv |
Koninklijke Nederlandse Planteziektenkundige Vereniging 2017 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Koninklijke Nederlandse Planteziektenkundige Vereniging 2017 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
European Journal of Plant Pathology |
publisher.none.fl_str_mv |
European Journal of Plant Pathology |
dc.source.none.fl_str_mv |
reponame:LOCUS Repositório Institucional da UFV instname:Universidade Federal de Viçosa (UFV) instacron:UFV |
instname_str |
Universidade Federal de Viçosa (UFV) |
instacron_str |
UFV |
institution |
UFV |
reponame_str |
LOCUS Repositório Institucional da UFV |
collection |
LOCUS Repositório Institucional da UFV |
bitstream.url.fl_str_mv |
https://locus.ufv.br//bitstream/123456789/22729/1/artigo.pdf https://locus.ufv.br//bitstream/123456789/22729/2/license.txt |
bitstream.checksum.fl_str_mv |
531b9ff496c1c3808b81f7f941081d2c 8a4605be74aa9ea9d79846c1fba20a33 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV) |
repository.mail.fl_str_mv |
fabiojreis@ufv.br |
_version_ |
1801212889732743168 |