Produção, purificação e caracterização de celulases e hemicelulases do fungo da podridão-branca Pycnoporus sanguineus PF-2

Detalhes bibliográficos
Autor(a) principal: Rodrigues, Rosilene Souza
Data de Publicação: 2014
Tipo de documento: Tese
Idioma: por
Título da fonte: LOCUS Repositório Institucional da UFV
Texto Completo: http://locus.ufv.br/handle/123456789/339
Resumo: Neste trabalho, o processo de produção de celulases e hemicelulases pelo fungo da podridão-branca Pycnoporus sanguineus PF-2 visando a sua aplicação na sacarificação do bagaço de cana foi estudada. Inicialmente, o meio de cultura para a produção de celulases e xilanase foi otimizado a partir das metodologias Fatorial Fracionado 25-1 (resolução V) seguido por um Delineamento Composto Central Rotacional (DCCR). Para a máxima produção de endoglicanase (16,42 U/mL), FPase (0,38 U/mL) e xilanase (111,03 U/mL), os valores ótimos para os fatores concentração de forrageira, concentração de peptona e concentração de ZnSO 4 foram 4 % (m/v), 2 % (m/v) e 12,5 mg/L, respectivamente. Já os valores ótimos para o tempo de cultivo foi 186,1 h para endoglicanase, 180 h para FPase e 185,1 h para xilanase. Para atividade celobiase, a máxima produção (0,35 U/mL) ocorreu quando os fatores concentração de forrageira, concentração de peptona e tempo de cultivo foram 4 % (m/v), 2 % (m/v) e 60 h. As atividades de endoglicanase, celobiase e xilanase produzidas apresentaram máximas atividades entre 55 e 65 °C e em pH entre 4,0 e 5,5. Endoglicanase e xilanase retiveram mais de 50 % de atividade residual após 13 h de incubação a 60 °C. O extrato bruto otimizado foi aplicado na sacarificação do bagaço de cana, convertendo 17,4 % da celulose em glicose após 76 h. Em sequência, a fim de se obter maiores rendimentos na hidrólise do bagaço de cana, o extrato enzimático de P. sanguineus, produzido em fermentação submersa (FS), e o extrato enzimático de C. cubensis, produzido em fermentação em estado sólido (FES), foram misturados em diferentes proporções e avaliados quanto à ocorrência de sinergismos entre as enzimas presentes nestes extratos. Os coquetéis produzidos a partir de uma simples mistura dos extratos enzimáticos destes fungos não apresentaram nenhum efeito sinérgico positivo. Contudo, quando esta mistura foi realizada de forma não convencional, ou seja, durante a extração enzimática das enzimas produzidas na FES, observou-se grandes efeitos sinérgicos sobre as atividades das enzimas FPase, exoglicanase, celobiase, β-glicosidase, xilanase, β- xilosidase e -arabinofuranosidase. Os aumentos obtidos nas atividades enzimáticas destas enzimas foram de 52,2 %, 9,2 %, 62 %, 26,5 %, 12,2 %, 56,2 % e 18,4 %, respectivamente. O coquetel produzido a partir desta mistura não convencional dos extratos enzimáticos de P. sanguineus e C. cubensis foi aplicado na sacarificação do bagaço de cana e altos rendimentos de conversão de glicana e xilana foram alcançados. Quando utilizou-se uma carga enzimática de 10 FPU/g, foram obtidos rendimentos de 85 % e 95% de conversão de glicana e xilana, respectivamente. Já quando uma carga de 5 FPU/g foi utilizada, os rendimentos foram de 68 % e 85 % para conversão de glicana e xilana, respectivamente. Por fim, um novo complexo celulásico, CMCase, produzido pelo fungo P. sanguineus, foi purificado e caracterizado cinético e bioquimicamente. O complexo CMCase purificado é composto por duas endoglicanases, sendo uma pertencente a família GH10 e outra com homologia parcial às proteínas TLs (Thaumatinas-like) e ainda sem classificação; além de duas celobiohidrolases, GH6 e GH7. A endoglicanase GH10 possui massa molecular de 35,9 kDa. A endoglicanase sem classificação e a celobiohidrolase GH6 possuem massas moleculares de 42 kDa, já a celobiohidrolase GH7 possui massa molecular de 52,7 kDa. O complexo CMCase foi bastante termoestável, com temperatura ótima de atividade a 70°C, e apresentando meia-vida de 57,2 h a 50°C. Além disso, apresentou altas atividades em uma ampla faixa de pH (3,5-5,5) e temperatura (50-75°C). Os valores de KM e Vmax foram de 45,72 mg/mL e 7 μmol/min, respectivamente. Foi verificado que os íons metálicos Fe3+, Ag3+, Hg2+ e Cu2+ e os reagentes SDS, furfural, HMF e ácido acético apresentam efeito inibitório sobre a atividade enzimática do complexo CMCase. Foi observado também que complexo CMCase possui maior especificidade pelo substrato barley-β-glicano e pelas hemiceluloses xilana birchwood e locust bean gum, apresentando também altas atividades sobre estes substrato. Além disso, o complexo CMCase foi aplicado na hidrólise do CMC e verificou-se uma grande formação de glicose e celobiose com o decorrer do tempo, sugerindo uma clivagem assimétrica dos oligossacarídeos maiores produzidos, ou seja, o complexo CMCase cliva preferencialmente em regiões mais externas dos oligassacarídeos maiores.
id UFV_168ab5b803db23b1f9ca36688f4f8bd5
oai_identifier_str oai:locus.ufv.br:123456789/339
network_acronym_str UFV
network_name_str LOCUS Repositório Institucional da UFV
repository_id_str 2145
spelling Produção, purificação e caracterização de celulases e hemicelulases do fungo da podridão-branca Pycnoporus sanguineus PF-2Production, purification and characterization of cellulases and hemicellulases from the white-rot fungus Pycnoporus sanguineus PF-2BiocombustíveisBiomassas lignocelulósicasPycnoporus sanguineusChrysoporthe cubensisBiofuelsLignocellulosic biomassPycnoporus sanguineusChrysoporthe cubensisCNPQ::CIENCIAS BIOLOGICAS::BIOQUIMICANeste trabalho, o processo de produção de celulases e hemicelulases pelo fungo da podridão-branca Pycnoporus sanguineus PF-2 visando a sua aplicação na sacarificação do bagaço de cana foi estudada. Inicialmente, o meio de cultura para a produção de celulases e xilanase foi otimizado a partir das metodologias Fatorial Fracionado 25-1 (resolução V) seguido por um Delineamento Composto Central Rotacional (DCCR). Para a máxima produção de endoglicanase (16,42 U/mL), FPase (0,38 U/mL) e xilanase (111,03 U/mL), os valores ótimos para os fatores concentração de forrageira, concentração de peptona e concentração de ZnSO 4 foram 4 % (m/v), 2 % (m/v) e 12,5 mg/L, respectivamente. Já os valores ótimos para o tempo de cultivo foi 186,1 h para endoglicanase, 180 h para FPase e 185,1 h para xilanase. Para atividade celobiase, a máxima produção (0,35 U/mL) ocorreu quando os fatores concentração de forrageira, concentração de peptona e tempo de cultivo foram 4 % (m/v), 2 % (m/v) e 60 h. As atividades de endoglicanase, celobiase e xilanase produzidas apresentaram máximas atividades entre 55 e 65 °C e em pH entre 4,0 e 5,5. Endoglicanase e xilanase retiveram mais de 50 % de atividade residual após 13 h de incubação a 60 °C. O extrato bruto otimizado foi aplicado na sacarificação do bagaço de cana, convertendo 17,4 % da celulose em glicose após 76 h. Em sequência, a fim de se obter maiores rendimentos na hidrólise do bagaço de cana, o extrato enzimático de P. sanguineus, produzido em fermentação submersa (FS), e o extrato enzimático de C. cubensis, produzido em fermentação em estado sólido (FES), foram misturados em diferentes proporções e avaliados quanto à ocorrência de sinergismos entre as enzimas presentes nestes extratos. Os coquetéis produzidos a partir de uma simples mistura dos extratos enzimáticos destes fungos não apresentaram nenhum efeito sinérgico positivo. Contudo, quando esta mistura foi realizada de forma não convencional, ou seja, durante a extração enzimática das enzimas produzidas na FES, observou-se grandes efeitos sinérgicos sobre as atividades das enzimas FPase, exoglicanase, celobiase, β-glicosidase, xilanase, β- xilosidase e -arabinofuranosidase. Os aumentos obtidos nas atividades enzimáticas destas enzimas foram de 52,2 %, 9,2 %, 62 %, 26,5 %, 12,2 %, 56,2 % e 18,4 %, respectivamente. O coquetel produzido a partir desta mistura não convencional dos extratos enzimáticos de P. sanguineus e C. cubensis foi aplicado na sacarificação do bagaço de cana e altos rendimentos de conversão de glicana e xilana foram alcançados. Quando utilizou-se uma carga enzimática de 10 FPU/g, foram obtidos rendimentos de 85 % e 95% de conversão de glicana e xilana, respectivamente. Já quando uma carga de 5 FPU/g foi utilizada, os rendimentos foram de 68 % e 85 % para conversão de glicana e xilana, respectivamente. Por fim, um novo complexo celulásico, CMCase, produzido pelo fungo P. sanguineus, foi purificado e caracterizado cinético e bioquimicamente. O complexo CMCase purificado é composto por duas endoglicanases, sendo uma pertencente a família GH10 e outra com homologia parcial às proteínas TLs (Thaumatinas-like) e ainda sem classificação; além de duas celobiohidrolases, GH6 e GH7. A endoglicanase GH10 possui massa molecular de 35,9 kDa. A endoglicanase sem classificação e a celobiohidrolase GH6 possuem massas moleculares de 42 kDa, já a celobiohidrolase GH7 possui massa molecular de 52,7 kDa. O complexo CMCase foi bastante termoestável, com temperatura ótima de atividade a 70°C, e apresentando meia-vida de 57,2 h a 50°C. Além disso, apresentou altas atividades em uma ampla faixa de pH (3,5-5,5) e temperatura (50-75°C). Os valores de KM e Vmax foram de 45,72 mg/mL e 7 μmol/min, respectivamente. Foi verificado que os íons metálicos Fe3+, Ag3+, Hg2+ e Cu2+ e os reagentes SDS, furfural, HMF e ácido acético apresentam efeito inibitório sobre a atividade enzimática do complexo CMCase. Foi observado também que complexo CMCase possui maior especificidade pelo substrato barley-β-glicano e pelas hemiceluloses xilana birchwood e locust bean gum, apresentando também altas atividades sobre estes substrato. Além disso, o complexo CMCase foi aplicado na hidrólise do CMC e verificou-se uma grande formação de glicose e celobiose com o decorrer do tempo, sugerindo uma clivagem assimétrica dos oligossacarídeos maiores produzidos, ou seja, o complexo CMCase cliva preferencialmente em regiões mais externas dos oligassacarídeos maiores.In this work, the process of cellulases and hemicellulases production by white-rot fungus Pycnoporus sanguineus PF- 2 targeting its application in sugarcane bagasse saccharification was evaluated. Initially, the culture medium for the production of cellulase and xylanase was optimized using methods of Fractional Factorial 2 5-1 (Resolution V) followed by a Rotational Central Composite Design (RCCD). For maximum production of endoglucanase (16.42 U/mL), FPase (0.38 U/ml) and xylanase (111,03 U/ml), the optimum values for the factors forage concentration, peptone concentration and ZnSO4 concentration were 4 % (w/v), 2 % (w/v) and 12.5 mg/L, respectively. The optimal values for the cultivation time were 186.1 h for endoglucanase, 180 h for FPase and 185.1 h for xylanase. For cellobiase activity, the highest yield (0.35 U/ml) comes when the forage concentration, concentration peptone and cultivation time were 4 % (w/v), 2 % (w/v) and 60 h. The endoglucanase, cellobiase and xylanase activities produced presented maximal activity between 55 and 65°C and pH between 4.0 and 5.5. Endoglucanase and xylanase retained more than 50 % of residual activity after 13 h of incubation at 60°C. The optimized crude extract was applied to the sugarcane bagasse saccharification, converting 17.4 % of cellulose into glucose after 76 h. Following, in order to obtain higher yields in the hydrolysis of sugarcane bagasse, the enzymatic extract of P. sanguineus produced in Submerged Fermentation (SF) and enzyme extract of C. cubensis produced in Solid State Fermentation (SSF) were blended in different proportions and evaluated in relation to the appearance of synergism between the enzymes present in these extracts. The cocktails made from a simple enzymatic extracts mixture of these fungi showed no positive synergistic effect. However, when this mixture was carried out in an unconventional way, i.e., during the enzymatic extraction of enzymes produced in the FES, we observed large synergistic effects on the activities of enzymes FPase, exoglicanase, cellobiase, β- glucosidase, xylanase, β-xylosidase and α-arabinofuranosidase. The increases obtained in the enzymes activities were 52.2 %, 9.2 %, 62 %, 26.5 %, 12.2 %, 56.2 % and 18.4 %, respectively. The cocktail produced from this unconventional mixture of P. sanguineus and C. cubensis enzymatic extracts was applied to the sugarcane bagasse saccharification and high conversion yields of glucan and xylan were achieved. When used an enzymatic load of 10 FPU/g, conversion yields of 85 % and 95 % for glucan and xylan, respectively, were obtained. When an enzymatic load was 5 FPU/g, the conversion yields were 68 % and 85 % for glucan and xylan, respectively. Also, a new cellulasic complex CMCase produced by the P. sanguineus fungus was purified and characterized kinetically and biochemically. The purified CMCase complex consists of two endoglucanases, one GH10 (EG1) and another with partial homology to TLs proteins and unrated (EG2), and two cellobiohydrolases, GH6 and GH7. The EG1 endoglucanase has a molecular mass of 35.9 kDa, the EG2 endoglucanase and the GH6 cellobiohydrolase have molecular masses of 42 kDa, and the cellobiohydrolase GH7 has molecular mass of 52.7 kDa. The CMCase complex was very thermostable, with optimal temperature of activity at 70 °C and half-life of 57.2 h at 50 °C. Furthermore, showed high activities in a broad range of pH (3.5-5.5) and temperature (50-75°C). The values of KM and Vmax were 45.72 mg/ml and 7 μmol/min, respectively. It was found that the metallic ions Fe3+, Ag3+, Hg2+ and Cu2+ and the reagents SDS, furfural, HMF and acetic acid have inhibitory effect on the enzymatic activity of the CMCase complex. It was also observed that the CMCase complex has high specificity for the barley-β-glucan substrate and the birchwood xylan and locust bean gum hemicelluloses, also showing high activity on this substrate. Furthermore, the CMCase complex was applied to the hydrolysis of CMC and a large glucose and cellobiose formation was observed during the time, suggesting an asymmetric cleavage of the larger oligosaccharides produced, in other words, the CMCase complex cleaves preferentially at the outer regions of the larger oligosaccharides chain.Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorUniversidade Federal de ViçosaBRBioquímica e Biologia molecular de plantas; Bioquímica e Biologia molecular animalDoutorado em Bioquímica AgrícolaUFVhttp://lattes.cnpq.br/5969105465137618Guimarães, Valéria Montezehttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4798758T3Fietto, Luciano Gomeshttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4763824H8Rezende, Sebastião Tavares dehttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4787599A3Eller, Monique Renonhttp://lattes.cnpq.br/4821785523906789Silveira, Wendel Batista dahttp://lattes.cnpq.br/7361036485940798Trevizano, Larissa Mattoshttp://lattes.cnpq.br/3860787717001357Rodrigues, Rosilene Souza2015-03-26T12:15:25Z2014-11-282015-03-26T12:15:25Z2014-02-20info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfapplication/pdfRODRIGUES, Rosilene Souza. Production, purification and characterization of cellulases and hemicellulases from the white-rot fungus Pycnoporus sanguineus PF-2. 2014. 159 f. Tese (Doutorado em Bioquímica e Biologia molecular de plantas; Bioquímica e Biologia molecular animal) - Universidade Federal de Viçosa, Viçosa, 2014.http://locus.ufv.br/handle/123456789/339porinfo:eu-repo/semantics/openAccessreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFV2016-04-07T02:03:30Zoai:locus.ufv.br:123456789/339Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452016-04-07T02:03:30LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false
dc.title.none.fl_str_mv Produção, purificação e caracterização de celulases e hemicelulases do fungo da podridão-branca Pycnoporus sanguineus PF-2
Production, purification and characterization of cellulases and hemicellulases from the white-rot fungus Pycnoporus sanguineus PF-2
title Produção, purificação e caracterização de celulases e hemicelulases do fungo da podridão-branca Pycnoporus sanguineus PF-2
spellingShingle Produção, purificação e caracterização de celulases e hemicelulases do fungo da podridão-branca Pycnoporus sanguineus PF-2
Rodrigues, Rosilene Souza
Biocombustíveis
Biomassas lignocelulósicas
Pycnoporus sanguineus
Chrysoporthe cubensis
Biofuels
Lignocellulosic biomass
Pycnoporus sanguineus
Chrysoporthe cubensis
CNPQ::CIENCIAS BIOLOGICAS::BIOQUIMICA
title_short Produção, purificação e caracterização de celulases e hemicelulases do fungo da podridão-branca Pycnoporus sanguineus PF-2
title_full Produção, purificação e caracterização de celulases e hemicelulases do fungo da podridão-branca Pycnoporus sanguineus PF-2
title_fullStr Produção, purificação e caracterização de celulases e hemicelulases do fungo da podridão-branca Pycnoporus sanguineus PF-2
title_full_unstemmed Produção, purificação e caracterização de celulases e hemicelulases do fungo da podridão-branca Pycnoporus sanguineus PF-2
title_sort Produção, purificação e caracterização de celulases e hemicelulases do fungo da podridão-branca Pycnoporus sanguineus PF-2
author Rodrigues, Rosilene Souza
author_facet Rodrigues, Rosilene Souza
author_role author
dc.contributor.none.fl_str_mv http://lattes.cnpq.br/5969105465137618
Guimarães, Valéria Monteze
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4798758T3
Fietto, Luciano Gomes
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4763824H8
Rezende, Sebastião Tavares de
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4787599A3
Eller, Monique Renon
http://lattes.cnpq.br/4821785523906789
Silveira, Wendel Batista da
http://lattes.cnpq.br/7361036485940798
Trevizano, Larissa Mattos
http://lattes.cnpq.br/3860787717001357
dc.contributor.author.fl_str_mv Rodrigues, Rosilene Souza
dc.subject.por.fl_str_mv Biocombustíveis
Biomassas lignocelulósicas
Pycnoporus sanguineus
Chrysoporthe cubensis
Biofuels
Lignocellulosic biomass
Pycnoporus sanguineus
Chrysoporthe cubensis
CNPQ::CIENCIAS BIOLOGICAS::BIOQUIMICA
topic Biocombustíveis
Biomassas lignocelulósicas
Pycnoporus sanguineus
Chrysoporthe cubensis
Biofuels
Lignocellulosic biomass
Pycnoporus sanguineus
Chrysoporthe cubensis
CNPQ::CIENCIAS BIOLOGICAS::BIOQUIMICA
description Neste trabalho, o processo de produção de celulases e hemicelulases pelo fungo da podridão-branca Pycnoporus sanguineus PF-2 visando a sua aplicação na sacarificação do bagaço de cana foi estudada. Inicialmente, o meio de cultura para a produção de celulases e xilanase foi otimizado a partir das metodologias Fatorial Fracionado 25-1 (resolução V) seguido por um Delineamento Composto Central Rotacional (DCCR). Para a máxima produção de endoglicanase (16,42 U/mL), FPase (0,38 U/mL) e xilanase (111,03 U/mL), os valores ótimos para os fatores concentração de forrageira, concentração de peptona e concentração de ZnSO 4 foram 4 % (m/v), 2 % (m/v) e 12,5 mg/L, respectivamente. Já os valores ótimos para o tempo de cultivo foi 186,1 h para endoglicanase, 180 h para FPase e 185,1 h para xilanase. Para atividade celobiase, a máxima produção (0,35 U/mL) ocorreu quando os fatores concentração de forrageira, concentração de peptona e tempo de cultivo foram 4 % (m/v), 2 % (m/v) e 60 h. As atividades de endoglicanase, celobiase e xilanase produzidas apresentaram máximas atividades entre 55 e 65 °C e em pH entre 4,0 e 5,5. Endoglicanase e xilanase retiveram mais de 50 % de atividade residual após 13 h de incubação a 60 °C. O extrato bruto otimizado foi aplicado na sacarificação do bagaço de cana, convertendo 17,4 % da celulose em glicose após 76 h. Em sequência, a fim de se obter maiores rendimentos na hidrólise do bagaço de cana, o extrato enzimático de P. sanguineus, produzido em fermentação submersa (FS), e o extrato enzimático de C. cubensis, produzido em fermentação em estado sólido (FES), foram misturados em diferentes proporções e avaliados quanto à ocorrência de sinergismos entre as enzimas presentes nestes extratos. Os coquetéis produzidos a partir de uma simples mistura dos extratos enzimáticos destes fungos não apresentaram nenhum efeito sinérgico positivo. Contudo, quando esta mistura foi realizada de forma não convencional, ou seja, durante a extração enzimática das enzimas produzidas na FES, observou-se grandes efeitos sinérgicos sobre as atividades das enzimas FPase, exoglicanase, celobiase, β-glicosidase, xilanase, β- xilosidase e -arabinofuranosidase. Os aumentos obtidos nas atividades enzimáticas destas enzimas foram de 52,2 %, 9,2 %, 62 %, 26,5 %, 12,2 %, 56,2 % e 18,4 %, respectivamente. O coquetel produzido a partir desta mistura não convencional dos extratos enzimáticos de P. sanguineus e C. cubensis foi aplicado na sacarificação do bagaço de cana e altos rendimentos de conversão de glicana e xilana foram alcançados. Quando utilizou-se uma carga enzimática de 10 FPU/g, foram obtidos rendimentos de 85 % e 95% de conversão de glicana e xilana, respectivamente. Já quando uma carga de 5 FPU/g foi utilizada, os rendimentos foram de 68 % e 85 % para conversão de glicana e xilana, respectivamente. Por fim, um novo complexo celulásico, CMCase, produzido pelo fungo P. sanguineus, foi purificado e caracterizado cinético e bioquimicamente. O complexo CMCase purificado é composto por duas endoglicanases, sendo uma pertencente a família GH10 e outra com homologia parcial às proteínas TLs (Thaumatinas-like) e ainda sem classificação; além de duas celobiohidrolases, GH6 e GH7. A endoglicanase GH10 possui massa molecular de 35,9 kDa. A endoglicanase sem classificação e a celobiohidrolase GH6 possuem massas moleculares de 42 kDa, já a celobiohidrolase GH7 possui massa molecular de 52,7 kDa. O complexo CMCase foi bastante termoestável, com temperatura ótima de atividade a 70°C, e apresentando meia-vida de 57,2 h a 50°C. Além disso, apresentou altas atividades em uma ampla faixa de pH (3,5-5,5) e temperatura (50-75°C). Os valores de KM e Vmax foram de 45,72 mg/mL e 7 μmol/min, respectivamente. Foi verificado que os íons metálicos Fe3+, Ag3+, Hg2+ e Cu2+ e os reagentes SDS, furfural, HMF e ácido acético apresentam efeito inibitório sobre a atividade enzimática do complexo CMCase. Foi observado também que complexo CMCase possui maior especificidade pelo substrato barley-β-glicano e pelas hemiceluloses xilana birchwood e locust bean gum, apresentando também altas atividades sobre estes substrato. Além disso, o complexo CMCase foi aplicado na hidrólise do CMC e verificou-se uma grande formação de glicose e celobiose com o decorrer do tempo, sugerindo uma clivagem assimétrica dos oligossacarídeos maiores produzidos, ou seja, o complexo CMCase cliva preferencialmente em regiões mais externas dos oligassacarídeos maiores.
publishDate 2014
dc.date.none.fl_str_mv 2014-11-28
2014-02-20
2015-03-26T12:15:25Z
2015-03-26T12:15:25Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv RODRIGUES, Rosilene Souza. Production, purification and characterization of cellulases and hemicellulases from the white-rot fungus Pycnoporus sanguineus PF-2. 2014. 159 f. Tese (Doutorado em Bioquímica e Biologia molecular de plantas; Bioquímica e Biologia molecular animal) - Universidade Federal de Viçosa, Viçosa, 2014.
http://locus.ufv.br/handle/123456789/339
identifier_str_mv RODRIGUES, Rosilene Souza. Production, purification and characterization of cellulases and hemicellulases from the white-rot fungus Pycnoporus sanguineus PF-2. 2014. 159 f. Tese (Doutorado em Bioquímica e Biologia molecular de plantas; Bioquímica e Biologia molecular animal) - Universidade Federal de Viçosa, Viçosa, 2014.
url http://locus.ufv.br/handle/123456789/339
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Viçosa
BR
Bioquímica e Biologia molecular de plantas; Bioquímica e Biologia molecular animal
Doutorado em Bioquímica Agrícola
UFV
publisher.none.fl_str_mv Universidade Federal de Viçosa
BR
Bioquímica e Biologia molecular de plantas; Bioquímica e Biologia molecular animal
Doutorado em Bioquímica Agrícola
UFV
dc.source.none.fl_str_mv reponame:LOCUS Repositório Institucional da UFV
instname:Universidade Federal de Viçosa (UFV)
instacron:UFV
instname_str Universidade Federal de Viçosa (UFV)
instacron_str UFV
institution UFV
reponame_str LOCUS Repositório Institucional da UFV
collection LOCUS Repositório Institucional da UFV
repository.name.fl_str_mv LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)
repository.mail.fl_str_mv fabiojreis@ufv.br
_version_ 1822610577239834624