The use of different sampling grids in determining the variability of soil physical attributes of Oxisol

Detalhes bibliográficos
Autor(a) principal: Bottega, Eduardo Leonel
Data de Publicação: 2014
Outros Autores: Queiroz, Daniel Marçal de, Pinto, Francisco de Assis de Carvalho, Santos, Nerilson Terra
Tipo de documento: Artigo
Idioma: eng
Título da fonte: LOCUS Repositório Institucional da UFV
Texto Completo: https://dialnet.unirioja.es/servlet/articulo?codigo=5022044
http://www.locus.ufv.br/handle/123456789/23371
Resumo: This study aimed to analyze the influence of different sampling grids in determining the spatial variability of physical attributes of Oxisol. It was used to study an area of approximately 90 hectares, where soil was sampled at depth from 0 to 0.20 meters, using a grid of 2 points per hectare (G1). Each soil sample was composed of four subsamples and obtained using a soil sampler Dutch type. The samples were sent to the laboratory to granulometric analysis. From the initial grid, the area was divided into sampling cells of 2.9 (G2) and 4.7 hectares (G3), and assigned a coordinate value representative of the center of each cell. Classical statistical and geostatistical methods were used to characterize the data and to model the spatial dependence. Spatial dependence was detected for all physical variables of the soil, regardless of the sampling grid used. The utilization of sampling grid of 1 point for each 2.9 hectares, and the sampling cell characterized by 12 subsamples, showed itself capable of detecting the spatial variability of the physical attributes of the soil, guaranteeing reliability in the estimates, even reducing the quantity of points when compared to the densest grid.
id UFV_1d00dcb709316b85cd5cffa4cf4da4e3
oai_identifier_str oai:locus.ufv.br:123456789/23371
network_acronym_str UFV
network_name_str LOCUS Repositório Institucional da UFV
repository_id_str 2145
spelling The use of different sampling grids in determining the variability of soil physical attributes of OxisolPrecision agricultureGeostatisticsSpatial variabilitySoilAgricultura de precisãoGeoestatísticaSoloVariabilidade espacialThis study aimed to analyze the influence of different sampling grids in determining the spatial variability of physical attributes of Oxisol. It was used to study an area of approximately 90 hectares, where soil was sampled at depth from 0 to 0.20 meters, using a grid of 2 points per hectare (G1). Each soil sample was composed of four subsamples and obtained using a soil sampler Dutch type. The samples were sent to the laboratory to granulometric analysis. From the initial grid, the area was divided into sampling cells of 2.9 (G2) and 4.7 hectares (G3), and assigned a coordinate value representative of the center of each cell. Classical statistical and geostatistical methods were used to characterize the data and to model the spatial dependence. Spatial dependence was detected for all physical variables of the soil, regardless of the sampling grid used. The utilization of sampling grid of 1 point for each 2.9 hectares, and the sampling cell characterized by 12 subsamples, showed itself capable of detecting the spatial variability of the physical attributes of the soil, guaranteeing reliability in the estimates, even reducing the quantity of points when compared to the densest grid.O presente estudo teve por objetivo analisar a influência de diferentes grades amostrais na determinação da variabilidade espacial dos atributos físicos de um Latossolo Vermelho distroférrico. Utilizou-se para o estudo uma área de aproximadamente 90 hectares, onde se amostrou solo na profundidade de 0 – 0,20 metros, utilizando grade de 2 pontos por hectare (G1). Cada amostra de solo foi composta de quatro subamostras e obtida utilizando um trado tipo holandês. As amostras foram encaminhadas ao laboratório para realização da análise granulométrica. A partir da grade inicial, a área foi dividida em células amostrais de 2,9 (G2) e 4,7 hectares (G3), sendo atribuído um valor de coordenada representativo do centro de cada célula. Métodos estatísticos clássicos e geoestatísticos foram empregados para caracterizar os dados e modelar a dependência espacial. Foi detectada dependência espacial para todas as variáveis físicas do solo, independente da grade amostral utilizada. A modelagem da dependência espacial dos atributos físicos do solo utilizando a grade amostral de 2 pontos por hectare foi a que apresentou, de forma geral, os melhores parâmetros de ajuste para validação cruzada. A utilização de grade amostral de 1 ponto para cada 2,9 hectares, sendo a célula amostral caracterizada por 12 subamostras, mostrou-se capaz de detectar a variabilidade espacial dos atributos físicos do solo, garantindo confiabilidade nas estimativas mesmo reduzindo a quantidade de pontos quando comparada a grade mais densa.Comunicata Scientiae2019-02-06T18:15:46Z2019-02-06T18:15:46Z2014-04info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlepdfapplication/pdf2177-5133https://dialnet.unirioja.es/servlet/articulo?codigo=5022044http://www.locus.ufv.br/handle/123456789/23371engv. 5, n. 2, p. 131- 139, abr.- jun. 2014Bottega, Eduardo LeonelQueiroz, Daniel Marçal dePinto, Francisco de Assis de CarvalhoSantos, Nerilson Terrainfo:eu-repo/semantics/openAccessreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFV2024-07-12T07:05:25Zoai:locus.ufv.br:123456789/23371Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452024-07-12T07:05:25LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false
dc.title.none.fl_str_mv The use of different sampling grids in determining the variability of soil physical attributes of Oxisol
title The use of different sampling grids in determining the variability of soil physical attributes of Oxisol
spellingShingle The use of different sampling grids in determining the variability of soil physical attributes of Oxisol
Bottega, Eduardo Leonel
Precision agriculture
Geostatistics
Spatial variability
Soil
Agricultura de precisão
Geoestatística
Solo
Variabilidade espacial
title_short The use of different sampling grids in determining the variability of soil physical attributes of Oxisol
title_full The use of different sampling grids in determining the variability of soil physical attributes of Oxisol
title_fullStr The use of different sampling grids in determining the variability of soil physical attributes of Oxisol
title_full_unstemmed The use of different sampling grids in determining the variability of soil physical attributes of Oxisol
title_sort The use of different sampling grids in determining the variability of soil physical attributes of Oxisol
author Bottega, Eduardo Leonel
author_facet Bottega, Eduardo Leonel
Queiroz, Daniel Marçal de
Pinto, Francisco de Assis de Carvalho
Santos, Nerilson Terra
author_role author
author2 Queiroz, Daniel Marçal de
Pinto, Francisco de Assis de Carvalho
Santos, Nerilson Terra
author2_role author
author
author
dc.contributor.author.fl_str_mv Bottega, Eduardo Leonel
Queiroz, Daniel Marçal de
Pinto, Francisco de Assis de Carvalho
Santos, Nerilson Terra
dc.subject.por.fl_str_mv Precision agriculture
Geostatistics
Spatial variability
Soil
Agricultura de precisão
Geoestatística
Solo
Variabilidade espacial
topic Precision agriculture
Geostatistics
Spatial variability
Soil
Agricultura de precisão
Geoestatística
Solo
Variabilidade espacial
description This study aimed to analyze the influence of different sampling grids in determining the spatial variability of physical attributes of Oxisol. It was used to study an area of approximately 90 hectares, where soil was sampled at depth from 0 to 0.20 meters, using a grid of 2 points per hectare (G1). Each soil sample was composed of four subsamples and obtained using a soil sampler Dutch type. The samples were sent to the laboratory to granulometric analysis. From the initial grid, the area was divided into sampling cells of 2.9 (G2) and 4.7 hectares (G3), and assigned a coordinate value representative of the center of each cell. Classical statistical and geostatistical methods were used to characterize the data and to model the spatial dependence. Spatial dependence was detected for all physical variables of the soil, regardless of the sampling grid used. The utilization of sampling grid of 1 point for each 2.9 hectares, and the sampling cell characterized by 12 subsamples, showed itself capable of detecting the spatial variability of the physical attributes of the soil, guaranteeing reliability in the estimates, even reducing the quantity of points when compared to the densest grid.
publishDate 2014
dc.date.none.fl_str_mv 2014-04
2019-02-06T18:15:46Z
2019-02-06T18:15:46Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv 2177-5133
https://dialnet.unirioja.es/servlet/articulo?codigo=5022044
http://www.locus.ufv.br/handle/123456789/23371
identifier_str_mv 2177-5133
url https://dialnet.unirioja.es/servlet/articulo?codigo=5022044
http://www.locus.ufv.br/handle/123456789/23371
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv v. 5, n. 2, p. 131- 139, abr.- jun. 2014
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv pdf
application/pdf
dc.publisher.none.fl_str_mv Comunicata Scientiae
publisher.none.fl_str_mv Comunicata Scientiae
dc.source.none.fl_str_mv reponame:LOCUS Repositório Institucional da UFV
instname:Universidade Federal de Viçosa (UFV)
instacron:UFV
instname_str Universidade Federal de Viçosa (UFV)
instacron_str UFV
institution UFV
reponame_str LOCUS Repositório Institucional da UFV
collection LOCUS Repositório Institucional da UFV
repository.name.fl_str_mv LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)
repository.mail.fl_str_mv fabiojreis@ufv.br
_version_ 1817559897846317056