The use of different sampling grids in determining the variability of soil physical attributes of Oxisol
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | LOCUS Repositório Institucional da UFV |
Texto Completo: | https://dialnet.unirioja.es/servlet/articulo?codigo=5022044 http://www.locus.ufv.br/handle/123456789/23371 |
Resumo: | This study aimed to analyze the influence of different sampling grids in determining the spatial variability of physical attributes of Oxisol. It was used to study an area of approximately 90 hectares, where soil was sampled at depth from 0 to 0.20 meters, using a grid of 2 points per hectare (G1). Each soil sample was composed of four subsamples and obtained using a soil sampler Dutch type. The samples were sent to the laboratory to granulometric analysis. From the initial grid, the area was divided into sampling cells of 2.9 (G2) and 4.7 hectares (G3), and assigned a coordinate value representative of the center of each cell. Classical statistical and geostatistical methods were used to characterize the data and to model the spatial dependence. Spatial dependence was detected for all physical variables of the soil, regardless of the sampling grid used. The utilization of sampling grid of 1 point for each 2.9 hectares, and the sampling cell characterized by 12 subsamples, showed itself capable of detecting the spatial variability of the physical attributes of the soil, guaranteeing reliability in the estimates, even reducing the quantity of points when compared to the densest grid. |
id |
UFV_1d00dcb709316b85cd5cffa4cf4da4e3 |
---|---|
oai_identifier_str |
oai:locus.ufv.br:123456789/23371 |
network_acronym_str |
UFV |
network_name_str |
LOCUS Repositório Institucional da UFV |
repository_id_str |
2145 |
spelling |
The use of different sampling grids in determining the variability of soil physical attributes of OxisolPrecision agricultureGeostatisticsSpatial variabilitySoilAgricultura de precisãoGeoestatísticaSoloVariabilidade espacialThis study aimed to analyze the influence of different sampling grids in determining the spatial variability of physical attributes of Oxisol. It was used to study an area of approximately 90 hectares, where soil was sampled at depth from 0 to 0.20 meters, using a grid of 2 points per hectare (G1). Each soil sample was composed of four subsamples and obtained using a soil sampler Dutch type. The samples were sent to the laboratory to granulometric analysis. From the initial grid, the area was divided into sampling cells of 2.9 (G2) and 4.7 hectares (G3), and assigned a coordinate value representative of the center of each cell. Classical statistical and geostatistical methods were used to characterize the data and to model the spatial dependence. Spatial dependence was detected for all physical variables of the soil, regardless of the sampling grid used. The utilization of sampling grid of 1 point for each 2.9 hectares, and the sampling cell characterized by 12 subsamples, showed itself capable of detecting the spatial variability of the physical attributes of the soil, guaranteeing reliability in the estimates, even reducing the quantity of points when compared to the densest grid.O presente estudo teve por objetivo analisar a influência de diferentes grades amostrais na determinação da variabilidade espacial dos atributos físicos de um Latossolo Vermelho distroférrico. Utilizou-se para o estudo uma área de aproximadamente 90 hectares, onde se amostrou solo na profundidade de 0 – 0,20 metros, utilizando grade de 2 pontos por hectare (G1). Cada amostra de solo foi composta de quatro subamostras e obtida utilizando um trado tipo holandês. As amostras foram encaminhadas ao laboratório para realização da análise granulométrica. A partir da grade inicial, a área foi dividida em células amostrais de 2,9 (G2) e 4,7 hectares (G3), sendo atribuído um valor de coordenada representativo do centro de cada célula. Métodos estatísticos clássicos e geoestatísticos foram empregados para caracterizar os dados e modelar a dependência espacial. Foi detectada dependência espacial para todas as variáveis físicas do solo, independente da grade amostral utilizada. A modelagem da dependência espacial dos atributos físicos do solo utilizando a grade amostral de 2 pontos por hectare foi a que apresentou, de forma geral, os melhores parâmetros de ajuste para validação cruzada. A utilização de grade amostral de 1 ponto para cada 2,9 hectares, sendo a célula amostral caracterizada por 12 subamostras, mostrou-se capaz de detectar a variabilidade espacial dos atributos físicos do solo, garantindo confiabilidade nas estimativas mesmo reduzindo a quantidade de pontos quando comparada a grade mais densa.Comunicata Scientiae2019-02-06T18:15:46Z2019-02-06T18:15:46Z2014-04info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlepdfapplication/pdf2177-5133https://dialnet.unirioja.es/servlet/articulo?codigo=5022044http://www.locus.ufv.br/handle/123456789/23371engv. 5, n. 2, p. 131- 139, abr.- jun. 2014Bottega, Eduardo LeonelQueiroz, Daniel Marçal dePinto, Francisco de Assis de CarvalhoSantos, Nerilson Terrainfo:eu-repo/semantics/openAccessreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFV2024-07-12T07:05:25Zoai:locus.ufv.br:123456789/23371Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452024-07-12T07:05:25LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false |
dc.title.none.fl_str_mv |
The use of different sampling grids in determining the variability of soil physical attributes of Oxisol |
title |
The use of different sampling grids in determining the variability of soil physical attributes of Oxisol |
spellingShingle |
The use of different sampling grids in determining the variability of soil physical attributes of Oxisol Bottega, Eduardo Leonel Precision agriculture Geostatistics Spatial variability Soil Agricultura de precisão Geoestatística Solo Variabilidade espacial |
title_short |
The use of different sampling grids in determining the variability of soil physical attributes of Oxisol |
title_full |
The use of different sampling grids in determining the variability of soil physical attributes of Oxisol |
title_fullStr |
The use of different sampling grids in determining the variability of soil physical attributes of Oxisol |
title_full_unstemmed |
The use of different sampling grids in determining the variability of soil physical attributes of Oxisol |
title_sort |
The use of different sampling grids in determining the variability of soil physical attributes of Oxisol |
author |
Bottega, Eduardo Leonel |
author_facet |
Bottega, Eduardo Leonel Queiroz, Daniel Marçal de Pinto, Francisco de Assis de Carvalho Santos, Nerilson Terra |
author_role |
author |
author2 |
Queiroz, Daniel Marçal de Pinto, Francisco de Assis de Carvalho Santos, Nerilson Terra |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Bottega, Eduardo Leonel Queiroz, Daniel Marçal de Pinto, Francisco de Assis de Carvalho Santos, Nerilson Terra |
dc.subject.por.fl_str_mv |
Precision agriculture Geostatistics Spatial variability Soil Agricultura de precisão Geoestatística Solo Variabilidade espacial |
topic |
Precision agriculture Geostatistics Spatial variability Soil Agricultura de precisão Geoestatística Solo Variabilidade espacial |
description |
This study aimed to analyze the influence of different sampling grids in determining the spatial variability of physical attributes of Oxisol. It was used to study an area of approximately 90 hectares, where soil was sampled at depth from 0 to 0.20 meters, using a grid of 2 points per hectare (G1). Each soil sample was composed of four subsamples and obtained using a soil sampler Dutch type. The samples were sent to the laboratory to granulometric analysis. From the initial grid, the area was divided into sampling cells of 2.9 (G2) and 4.7 hectares (G3), and assigned a coordinate value representative of the center of each cell. Classical statistical and geostatistical methods were used to characterize the data and to model the spatial dependence. Spatial dependence was detected for all physical variables of the soil, regardless of the sampling grid used. The utilization of sampling grid of 1 point for each 2.9 hectares, and the sampling cell characterized by 12 subsamples, showed itself capable of detecting the spatial variability of the physical attributes of the soil, guaranteeing reliability in the estimates, even reducing the quantity of points when compared to the densest grid. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-04 2019-02-06T18:15:46Z 2019-02-06T18:15:46Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
2177-5133 https://dialnet.unirioja.es/servlet/articulo?codigo=5022044 http://www.locus.ufv.br/handle/123456789/23371 |
identifier_str_mv |
2177-5133 |
url |
https://dialnet.unirioja.es/servlet/articulo?codigo=5022044 http://www.locus.ufv.br/handle/123456789/23371 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
v. 5, n. 2, p. 131- 139, abr.- jun. 2014 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
pdf application/pdf |
dc.publisher.none.fl_str_mv |
Comunicata Scientiae |
publisher.none.fl_str_mv |
Comunicata Scientiae |
dc.source.none.fl_str_mv |
reponame:LOCUS Repositório Institucional da UFV instname:Universidade Federal de Viçosa (UFV) instacron:UFV |
instname_str |
Universidade Federal de Viçosa (UFV) |
instacron_str |
UFV |
institution |
UFV |
reponame_str |
LOCUS Repositório Institucional da UFV |
collection |
LOCUS Repositório Institucional da UFV |
repository.name.fl_str_mv |
LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV) |
repository.mail.fl_str_mv |
fabiojreis@ufv.br |
_version_ |
1817559897846317056 |