Mathematical modeling and determination of thermodynamic properties of jabuticaba peel during the drying process

Detalhes bibliográficos
Autor(a) principal: Costa, Cristian F.
Data de Publicação: 2016
Outros Autores: Corrêa, Paulo C., Vanegas, Jaime D. B., Baptestini, Fernanda M., Campos, Renata C., Fernandes, Lara S.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: LOCUS Repositório Institucional da UFV
Texto Completo: http://dx.doi.org/10.1590/1807-1929/agriambi.v20n6p576-580
http://www.locus.ufv.br/handle/123456789/23134
Resumo: Jabuticaba is a fruit native of Brazil and, besides containing many nutritional qualities, it also has a good field for use in products such as flour for cakes and biscuits, juice, liqueur, jelly and others. This study aimed to model the drying kinetics and determine the thermodynamic properties of jabuticaba peel at different drying air temperatures. Ripe fruits of jabuticaba (Myrciaria jaboticaba) were collected and pulped manually. Drying was carried out in a forced-air circulation oven with a flow of 5.6 m s -1 at temperatures of 40, 50, 60 and 70 °C. Six mathematical models commonly used to represent the drying process of agricultural products were fitted to the experimental data. The Arrhenius model was used to represent the drying constant as a function of temperature. The Midilli model showed the best fit to the experimental data of drying. The drying constant increased with the increment in drying temperature and promoted an activation energy of 37.29 kJ mol^ -1 . Enthalpy and Gibbs free energy decreased with the increase in drying temperature, while entropy decreased and was negative.
id UFV_37d76e35e26464a7c0886c1ad1a8a86c
oai_identifier_str oai:locus.ufv.br:123456789/23134
network_acronym_str UFV
network_name_str LOCUS Repositório Institucional da UFV
repository_id_str 2145
spelling Mathematical modeling and determination of thermodynamic properties of jabuticaba peel during the drying processMyrciaria jaboticabaEnthalpyEntropyEntalpiaEntropiaJabuticaba is a fruit native of Brazil and, besides containing many nutritional qualities, it also has a good field for use in products such as flour for cakes and biscuits, juice, liqueur, jelly and others. This study aimed to model the drying kinetics and determine the thermodynamic properties of jabuticaba peel at different drying air temperatures. Ripe fruits of jabuticaba (Myrciaria jaboticaba) were collected and pulped manually. Drying was carried out in a forced-air circulation oven with a flow of 5.6 m s -1 at temperatures of 40, 50, 60 and 70 °C. Six mathematical models commonly used to represent the drying process of agricultural products were fitted to the experimental data. The Arrhenius model was used to represent the drying constant as a function of temperature. The Midilli model showed the best fit to the experimental data of drying. The drying constant increased with the increment in drying temperature and promoted an activation energy of 37.29 kJ mol^ -1 . Enthalpy and Gibbs free energy decreased with the increase in drying temperature, while entropy decreased and was negative.A jabuticaba é um fruto nativo do Brasil e além de conter muitas qualidades nutricionais também possui bom campo para a utilização em subprodutos como farinhas para bolos e biscoitos, suco, licor, geleia e outros. Objetivou-se modelar a cinética de secagem e determinar as propriedades termodinâmicas de casca de jabuticaba em diferentes temperaturas do ar de secagem. Foram utilizadas jabuticabas maduras, colhidas e separadas da polpa manualmente, da espécie Myrciaria jaboticaba. A secagem foi realizada em estufa de circulação forçada de ar com velocidade de 5,6 m s -1 nas temperaturas de 40; 50; 60 e 70 °C. Seis modelos matemáticos usualmente utilizados para a representação do processo de secagem de produtos agrícolas foram ajustados aos dados experimentais. A relação do tipo Arrhenius foi utilizada para representar a constante de secagem em função da temperatura. O modelo de Midilli foi o que melhor se ajustou aos dados experimentais da secagem. A constante de secagem aumentou com o incremento da temperatura de secagem e proporcionou energia de ativação de 37,29 kJ mol^ -1 . A entalpia e a energia livre de Gibbs diminuíram com o aumento da temperatura de secagem; já a entropia diminuiu e foi negativa.Revista Brasileira de Engenharia Agrícola e Ambiental2019-01-22T12:20:19Z2019-01-22T12:20:19Z2016-06info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlepdfapplication/pdf1807-1929http://dx.doi.org/10.1590/1807-1929/agriambi.v20n6p576-580http://www.locus.ufv.br/handle/123456789/23134engv. 20, n. 6, p. 576- 580, jun. 2016Costa, Cristian F.Corrêa, Paulo C.Vanegas, Jaime D. B.Baptestini, Fernanda M.Campos, Renata C.Fernandes, Lara S.info:eu-repo/semantics/openAccessreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFV2024-07-12T08:14:37Zoai:locus.ufv.br:123456789/23134Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452024-07-12T08:14:37LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false
dc.title.none.fl_str_mv Mathematical modeling and determination of thermodynamic properties of jabuticaba peel during the drying process
title Mathematical modeling and determination of thermodynamic properties of jabuticaba peel during the drying process
spellingShingle Mathematical modeling and determination of thermodynamic properties of jabuticaba peel during the drying process
Costa, Cristian F.
Myrciaria jaboticaba
Enthalpy
Entropy
Entalpia
Entropia
title_short Mathematical modeling and determination of thermodynamic properties of jabuticaba peel during the drying process
title_full Mathematical modeling and determination of thermodynamic properties of jabuticaba peel during the drying process
title_fullStr Mathematical modeling and determination of thermodynamic properties of jabuticaba peel during the drying process
title_full_unstemmed Mathematical modeling and determination of thermodynamic properties of jabuticaba peel during the drying process
title_sort Mathematical modeling and determination of thermodynamic properties of jabuticaba peel during the drying process
author Costa, Cristian F.
author_facet Costa, Cristian F.
Corrêa, Paulo C.
Vanegas, Jaime D. B.
Baptestini, Fernanda M.
Campos, Renata C.
Fernandes, Lara S.
author_role author
author2 Corrêa, Paulo C.
Vanegas, Jaime D. B.
Baptestini, Fernanda M.
Campos, Renata C.
Fernandes, Lara S.
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Costa, Cristian F.
Corrêa, Paulo C.
Vanegas, Jaime D. B.
Baptestini, Fernanda M.
Campos, Renata C.
Fernandes, Lara S.
dc.subject.por.fl_str_mv Myrciaria jaboticaba
Enthalpy
Entropy
Entalpia
Entropia
topic Myrciaria jaboticaba
Enthalpy
Entropy
Entalpia
Entropia
description Jabuticaba is a fruit native of Brazil and, besides containing many nutritional qualities, it also has a good field for use in products such as flour for cakes and biscuits, juice, liqueur, jelly and others. This study aimed to model the drying kinetics and determine the thermodynamic properties of jabuticaba peel at different drying air temperatures. Ripe fruits of jabuticaba (Myrciaria jaboticaba) were collected and pulped manually. Drying was carried out in a forced-air circulation oven with a flow of 5.6 m s -1 at temperatures of 40, 50, 60 and 70 °C. Six mathematical models commonly used to represent the drying process of agricultural products were fitted to the experimental data. The Arrhenius model was used to represent the drying constant as a function of temperature. The Midilli model showed the best fit to the experimental data of drying. The drying constant increased with the increment in drying temperature and promoted an activation energy of 37.29 kJ mol^ -1 . Enthalpy and Gibbs free energy decreased with the increase in drying temperature, while entropy decreased and was negative.
publishDate 2016
dc.date.none.fl_str_mv 2016-06
2019-01-22T12:20:19Z
2019-01-22T12:20:19Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv 1807-1929
http://dx.doi.org/10.1590/1807-1929/agriambi.v20n6p576-580
http://www.locus.ufv.br/handle/123456789/23134
identifier_str_mv 1807-1929
url http://dx.doi.org/10.1590/1807-1929/agriambi.v20n6p576-580
http://www.locus.ufv.br/handle/123456789/23134
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv v. 20, n. 6, p. 576- 580, jun. 2016
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv pdf
application/pdf
dc.publisher.none.fl_str_mv Revista Brasileira de Engenharia Agrícola e Ambiental
publisher.none.fl_str_mv Revista Brasileira de Engenharia Agrícola e Ambiental
dc.source.none.fl_str_mv reponame:LOCUS Repositório Institucional da UFV
instname:Universidade Federal de Viçosa (UFV)
instacron:UFV
instname_str Universidade Federal de Viçosa (UFV)
instacron_str UFV
institution UFV
reponame_str LOCUS Repositório Institucional da UFV
collection LOCUS Repositório Institucional da UFV
repository.name.fl_str_mv LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)
repository.mail.fl_str_mv fabiojreis@ufv.br
_version_ 1817559999059066880