Classification of auditory selective attention using spatial coherence and modular attention index
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | LOCUS Repositório Institucional da UFV |
Texto Completo: | https://doi.org/10.1016/j.cmpb.2018.10.002 http://www.locus.ufv.br/handle/123456789/24083 |
Resumo: | Brain-Computer Interfaces (BCIs) based on auditory selective attention have been receiving much attention because i) they are useful for completely paralyzed users since they do not require muscular effort or gaze and ii) focusing attention is a natural human ability. Several techniques - such as recently developed Spatial Coherence (SC) - have been proposed in order to optimize the BCI procedure. Thus, this work aims at investigating and comparing two strategies based on spatial coherence detection: contralateral and modular classifiers. The latter is a new method using modular attention index. The new classifier was developed to implement an auditory BCI where a volunteer makes binary choices using selective attention under the amplitude-modulated tones stimulation. Contralateral and modular classifiers were applied to the electroencephalogram (EEG) recorded from 144 subjects under the BCI protocol. The best set of parameters (carriers of the stimulus, channels and trials of signal) for this BCI was investigated taking into consideration the hit rate and the information transfer rate. The best result obtained using the modular classifier was a hit rate of 91.67% and information transfer rate of 6.74 bits/min using 0.5 kHz/4.0 kHz as stimuli and three windows (5.10 sec of EEG signal). These results were obtained with five electrodes (C3, P3, F8, P4, O2) using exhaustive search to identify regions with greater coherence.The modular classifier - using electroencephalogram channels from the central, frontal, occipital and parietal areas - improves the performance of auditory BCIs based on selective attention. |
id |
UFV_3bfc9a8ef37d5db0260a9d8c0cb742e7 |
---|---|
oai_identifier_str |
oai:locus.ufv.br:123456789/24083 |
network_acronym_str |
UFV |
network_name_str |
LOCUS Repositório Institucional da UFV |
repository_id_str |
2145 |
spelling |
Souza, Ana Paula deSoares, Quenaz B.Felix, Leonardo B.Mendes, Eduardo M. A. M.2019-03-25T12:32:57Z2019-03-25T12:32:57Z2018-110169-2607https://doi.org/10.1016/j.cmpb.2018.10.002http://www.locus.ufv.br/handle/123456789/24083Brain-Computer Interfaces (BCIs) based on auditory selective attention have been receiving much attention because i) they are useful for completely paralyzed users since they do not require muscular effort or gaze and ii) focusing attention is a natural human ability. Several techniques - such as recently developed Spatial Coherence (SC) - have been proposed in order to optimize the BCI procedure. Thus, this work aims at investigating and comparing two strategies based on spatial coherence detection: contralateral and modular classifiers. The latter is a new method using modular attention index. The new classifier was developed to implement an auditory BCI where a volunteer makes binary choices using selective attention under the amplitude-modulated tones stimulation. Contralateral and modular classifiers were applied to the electroencephalogram (EEG) recorded from 144 subjects under the BCI protocol. The best set of parameters (carriers of the stimulus, channels and trials of signal) for this BCI was investigated taking into consideration the hit rate and the information transfer rate. The best result obtained using the modular classifier was a hit rate of 91.67% and information transfer rate of 6.74 bits/min using 0.5 kHz/4.0 kHz as stimuli and three windows (5.10 sec of EEG signal). These results were obtained with five electrodes (C3, P3, F8, P4, O2) using exhaustive search to identify regions with greater coherence.The modular classifier - using electroencephalogram channels from the central, frontal, occipital and parietal areas - improves the performance of auditory BCIs based on selective attention.engComputer Methods and Programs in BiomedicineVolume 166, Pages 107-113, November 2018Elsevier B. V.info:eu-repo/semantics/openAccessSelective attentionAuditory brain-computer interfaceElectroencephalogramSpatial coherenceClassification of auditory selective attention using spatial coherence and modular attention indexinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALartigo.pdfartigo.pdfTexto completoapplication/pdf1054635https://locus.ufv.br//bitstream/123456789/24083/1/artigo.pdfd305616d1c3408d8d0a0b9740059cc6dMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://locus.ufv.br//bitstream/123456789/24083/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52123456789/240832019-03-25 09:34:02.808oai:locus.ufv.br:123456789/24083Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452019-03-25T12:34:02LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false |
dc.title.en.fl_str_mv |
Classification of auditory selective attention using spatial coherence and modular attention index |
title |
Classification of auditory selective attention using spatial coherence and modular attention index |
spellingShingle |
Classification of auditory selective attention using spatial coherence and modular attention index Souza, Ana Paula de Selective attention Auditory brain-computer interface Electroencephalogram Spatial coherence |
title_short |
Classification of auditory selective attention using spatial coherence and modular attention index |
title_full |
Classification of auditory selective attention using spatial coherence and modular attention index |
title_fullStr |
Classification of auditory selective attention using spatial coherence and modular attention index |
title_full_unstemmed |
Classification of auditory selective attention using spatial coherence and modular attention index |
title_sort |
Classification of auditory selective attention using spatial coherence and modular attention index |
author |
Souza, Ana Paula de |
author_facet |
Souza, Ana Paula de Soares, Quenaz B. Felix, Leonardo B. Mendes, Eduardo M. A. M. |
author_role |
author |
author2 |
Soares, Quenaz B. Felix, Leonardo B. Mendes, Eduardo M. A. M. |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Souza, Ana Paula de Soares, Quenaz B. Felix, Leonardo B. Mendes, Eduardo M. A. M. |
dc.subject.pt-BR.fl_str_mv |
Selective attention Auditory brain-computer interface Electroencephalogram Spatial coherence |
topic |
Selective attention Auditory brain-computer interface Electroencephalogram Spatial coherence |
description |
Brain-Computer Interfaces (BCIs) based on auditory selective attention have been receiving much attention because i) they are useful for completely paralyzed users since they do not require muscular effort or gaze and ii) focusing attention is a natural human ability. Several techniques - such as recently developed Spatial Coherence (SC) - have been proposed in order to optimize the BCI procedure. Thus, this work aims at investigating and comparing two strategies based on spatial coherence detection: contralateral and modular classifiers. The latter is a new method using modular attention index. The new classifier was developed to implement an auditory BCI where a volunteer makes binary choices using selective attention under the amplitude-modulated tones stimulation. Contralateral and modular classifiers were applied to the electroencephalogram (EEG) recorded from 144 subjects under the BCI protocol. The best set of parameters (carriers of the stimulus, channels and trials of signal) for this BCI was investigated taking into consideration the hit rate and the information transfer rate. The best result obtained using the modular classifier was a hit rate of 91.67% and information transfer rate of 6.74 bits/min using 0.5 kHz/4.0 kHz as stimuli and three windows (5.10 sec of EEG signal). These results were obtained with five electrodes (C3, P3, F8, P4, O2) using exhaustive search to identify regions with greater coherence.The modular classifier - using electroencephalogram channels from the central, frontal, occipital and parietal areas - improves the performance of auditory BCIs based on selective attention. |
publishDate |
2018 |
dc.date.issued.fl_str_mv |
2018-11 |
dc.date.accessioned.fl_str_mv |
2019-03-25T12:32:57Z |
dc.date.available.fl_str_mv |
2019-03-25T12:32:57Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://doi.org/10.1016/j.cmpb.2018.10.002 http://www.locus.ufv.br/handle/123456789/24083 |
dc.identifier.issn.none.fl_str_mv |
0169-2607 |
identifier_str_mv |
0169-2607 |
url |
https://doi.org/10.1016/j.cmpb.2018.10.002 http://www.locus.ufv.br/handle/123456789/24083 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofseries.pt-BR.fl_str_mv |
Volume 166, Pages 107-113, November 2018 |
dc.rights.driver.fl_str_mv |
Elsevier B. V. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Elsevier B. V. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Computer Methods and Programs in Biomedicine |
publisher.none.fl_str_mv |
Computer Methods and Programs in Biomedicine |
dc.source.none.fl_str_mv |
reponame:LOCUS Repositório Institucional da UFV instname:Universidade Federal de Viçosa (UFV) instacron:UFV |
instname_str |
Universidade Federal de Viçosa (UFV) |
instacron_str |
UFV |
institution |
UFV |
reponame_str |
LOCUS Repositório Institucional da UFV |
collection |
LOCUS Repositório Institucional da UFV |
bitstream.url.fl_str_mv |
https://locus.ufv.br//bitstream/123456789/24083/1/artigo.pdf https://locus.ufv.br//bitstream/123456789/24083/2/license.txt |
bitstream.checksum.fl_str_mv |
d305616d1c3408d8d0a0b9740059cc6d 8a4605be74aa9ea9d79846c1fba20a33 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV) |
repository.mail.fl_str_mv |
fabiojreis@ufv.br |
_version_ |
1801212857624297472 |