Tratamento anaeróbio de efluentes de máquina de papel por biorreator convencional e biorreator de membranas
Autor(a) principal: | |
---|---|
Data de Publicação: | 2007 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | LOCUS Repositório Institucional da UFV |
Texto Completo: | http://locus.ufv.br/handle/123456789/516 |
Resumo: | Fresh water use in paper mills varies according to the type of paper produced, but it can be as high as 100 m3 per ton of paper. In order to reduce water use in paper mills, the reclamation of whitewater is an attractive option. However, it is not always possible to completely recover the whitewater in a closed-cycle manner due to the poor quality of this stream and the possible problems caused by the accumulation of contaminants in the mill. One way to overcome this problem is to remove these contaminants prior to water recycling. The first part of this work compared the efficiency of treatment and the feasibility of whitewater reuse of an anaerobic conventional bioreactor (ACBR) and an anaerobic membrane bioreactor (AMBR), using the whitewater collected from a writing and printing paper mill. In Phase 1, the conventional system operated with a hydraulic retention time (HRT) of 27 h and a chemical oxygen demand (COD) load of 0.24 kg COD m-3 d-1; and in Phase 2, with a HRT of 9 h and a COD load of 1.36 kg COD m-3 d-1. In Phase 1, the AMBR operated with a HRT of 26 h and a COD load of 0.33 kg COD m-3 d-1; and in Phase 2, with a HRT of 9 h and a COD load of 0.85 kg COD m-3 d-1. In the ACBR configuration the removal efficiencies were 66% and 74% for COD, 97% and 83% for total suspended solids (TSS) and 99% and 49% for turbidity, in Phases 1 and 2, respectively. In the AMBR configuration the removal efficiencies were 92% and 79% for COD, 99% and 90% for TSS and 100% and 92% for turbidity, in Phases 1 and 2, respectively. Both configurations showed good removal of total hardness. A slight increase in pH and in electric conductivity was observed. These results indicated that the AMBR has advantages over the conventional anaerobic treatment for reclaiming the treated whitewater, especially due to the high removal of suspended solids and the very low organic content present in the AMBR effluent. However, high values of hardness and electric conductivity in the effluent, not removed by the biological process, might become a drawback for a fully closed whitewater circuit. The second part of this research compared the efficiency of treatment of an ACBR and an AMBR, using the whitewater collected from a recycling paper mill (Old Corrugated Cardboard). The conventional system operated, in Phase 1, with HRT of 7 h and a COD load of 14.8 kg COD m-3 d-1; in Phase 2, with a HRT of 14 h and a COD load of 8.1 kg COD m-3 d-1; and in Phase 3, with a HRT of 24 h and a COD load of 4.7 kg COD m- 3 d-1. The AMBR operated, in Phase 1, with a HRT of 8 h and a COD load of 13.4 kg COD m-3 d-1; in Phase 2, with a HRT of 15 h and a COD load of 8.0 kg COD m-3 d-1; and in Phase 3, with a HRT of 23 h and a COD load of 4.8 kg COD m-3 d-1. The anaerobic treatment of the whitewater from OCC paper machine showed high concentrations of volatile organic acids, reflecting in bad removal for COD, turbidity and total hardness. For TSS, the AMBR showed a better performance than the ACBR. The third part of this work compared the efficiency of treatment and the feasibility of whitewater reuse of a mesophilic anaerobic membrane bioreactor (35ºC AMBR) and a thermophilic anaerobic membrane bioreactor (55ºC AMBR), using the whitewater collected from a writing and printing paper mill. In the 35ºC AMBR configuration, the removal efficiencies were 70% for COD, 95% for TSS and 68% for turbidity, operating with a HRT of 10.1 h and a COD load of 1.41 kg COD m-3 d-1. In the 55ºC AMBR configuration, the removal efficiencies were 55% for COD, 97% for TSS and 77% for turbidity, operating with a HRT of 9.8 h and a COD load of 1.46 kg COD m-3 d-1. Both configurations showed slight removal of total hardness and an increase in electric conductivity and real colour. Although COD removal at 55ºC was lower than at 35ºC, the 55ºC AMBR has advantages over the mesophilic anaerobic treatment mainly because it does not need the whitewater cooling. With recent developments in membrane materials, it may be possible to use polymeric membranes at an operating temperature of 55ºC. The major disadvantage associated with using polymeric submerged hollow fiber membranes is that their long-term use at elevated temperatures has not been well documented. |
id |
UFV_4160e53d56a41ca9b39cf01bd0f9e414 |
---|---|
oai_identifier_str |
oai:locus.ufv.br:123456789/516 |
network_acronym_str |
UFV |
network_name_str |
LOCUS Repositório Institucional da UFV |
repository_id_str |
2145 |
spelling |
Loures, Ana Paula Santanahttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4746316D3Mounteer, Ann Honorhttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4723208Y4Chernicharo, Carlos Augusto de Lemoshttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4781089E2Silva, Cláudio Mudadohttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4727931T6Mantovani, Hilário Cuquettohttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4727026Z7Dias, João Carlos Teixeirahttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4796452H12015-03-26T12:26:55Z2008-05-232015-03-26T12:26:55Z2007-10-08LOURES, Ana Paula Santana. Anaerobic treatment of paper machine effluents by conventional bioreactor and membrane bioreactor. 2007. 127 f. Tese (Doutorado em Manejo Florestal; Meio Ambiente e Conservação da Natureza; Silvicultura; Tecnologia e Utilização de) - Universidade Federal de Viçosa, Viçosa, 2007.http://locus.ufv.br/handle/123456789/516Fresh water use in paper mills varies according to the type of paper produced, but it can be as high as 100 m3 per ton of paper. In order to reduce water use in paper mills, the reclamation of whitewater is an attractive option. However, it is not always possible to completely recover the whitewater in a closed-cycle manner due to the poor quality of this stream and the possible problems caused by the accumulation of contaminants in the mill. One way to overcome this problem is to remove these contaminants prior to water recycling. The first part of this work compared the efficiency of treatment and the feasibility of whitewater reuse of an anaerobic conventional bioreactor (ACBR) and an anaerobic membrane bioreactor (AMBR), using the whitewater collected from a writing and printing paper mill. In Phase 1, the conventional system operated with a hydraulic retention time (HRT) of 27 h and a chemical oxygen demand (COD) load of 0.24 kg COD m-3 d-1; and in Phase 2, with a HRT of 9 h and a COD load of 1.36 kg COD m-3 d-1. In Phase 1, the AMBR operated with a HRT of 26 h and a COD load of 0.33 kg COD m-3 d-1; and in Phase 2, with a HRT of 9 h and a COD load of 0.85 kg COD m-3 d-1. In the ACBR configuration the removal efficiencies were 66% and 74% for COD, 97% and 83% for total suspended solids (TSS) and 99% and 49% for turbidity, in Phases 1 and 2, respectively. In the AMBR configuration the removal efficiencies were 92% and 79% for COD, 99% and 90% for TSS and 100% and 92% for turbidity, in Phases 1 and 2, respectively. Both configurations showed good removal of total hardness. A slight increase in pH and in electric conductivity was observed. These results indicated that the AMBR has advantages over the conventional anaerobic treatment for reclaiming the treated whitewater, especially due to the high removal of suspended solids and the very low organic content present in the AMBR effluent. However, high values of hardness and electric conductivity in the effluent, not removed by the biological process, might become a drawback for a fully closed whitewater circuit. The second part of this research compared the efficiency of treatment of an ACBR and an AMBR, using the whitewater collected from a recycling paper mill (Old Corrugated Cardboard). The conventional system operated, in Phase 1, with HRT of 7 h and a COD load of 14.8 kg COD m-3 d-1; in Phase 2, with a HRT of 14 h and a COD load of 8.1 kg COD m-3 d-1; and in Phase 3, with a HRT of 24 h and a COD load of 4.7 kg COD m- 3 d-1. The AMBR operated, in Phase 1, with a HRT of 8 h and a COD load of 13.4 kg COD m-3 d-1; in Phase 2, with a HRT of 15 h and a COD load of 8.0 kg COD m-3 d-1; and in Phase 3, with a HRT of 23 h and a COD load of 4.8 kg COD m-3 d-1. The anaerobic treatment of the whitewater from OCC paper machine showed high concentrations of volatile organic acids, reflecting in bad removal for COD, turbidity and total hardness. For TSS, the AMBR showed a better performance than the ACBR. The third part of this work compared the efficiency of treatment and the feasibility of whitewater reuse of a mesophilic anaerobic membrane bioreactor (35ºC AMBR) and a thermophilic anaerobic membrane bioreactor (55ºC AMBR), using the whitewater collected from a writing and printing paper mill. In the 35ºC AMBR configuration, the removal efficiencies were 70% for COD, 95% for TSS and 68% for turbidity, operating with a HRT of 10.1 h and a COD load of 1.41 kg COD m-3 d-1. In the 55ºC AMBR configuration, the removal efficiencies were 55% for COD, 97% for TSS and 77% for turbidity, operating with a HRT of 9.8 h and a COD load of 1.46 kg COD m-3 d-1. Both configurations showed slight removal of total hardness and an increase in electric conductivity and real colour. Although COD removal at 55ºC was lower than at 35ºC, the 55ºC AMBR has advantages over the mesophilic anaerobic treatment mainly because it does not need the whitewater cooling. With recent developments in membrane materials, it may be possible to use polymeric membranes at an operating temperature of 55ºC. The major disadvantage associated with using polymeric submerged hollow fiber membranes is that their long-term use at elevated temperatures has not been well documented.O consumo de água fresca em fábricas de papel varia de acordo com o tipo de papel produzido, podendo atingir 100 m3 por tonelada de papel. Assim, a recuperação da água branca torna-se uma opção atrativa para reduzir o consumo de água fresca nas fábricas. Entretanto, nem sempre é possível recuperar completamente a água branca em um circuito fechado devido à sua qualidade inadequada e aos possíveis problemas causados pelo acúmulo de contaminantes. Uma forma de superar estes problemas é a remoção destes contaminantes antes do reciclo da água. Na Etapa 1, este trabalho comparou a eficiência de tratamento e a exeqüibilidade do reúso da água branca de um biorreator anaeróbio convencional (BRAC) e de um biorreator anaeróbio de membranas (BRAM), sendo utilizada a água branca coletada em uma fábrica de papel para imprimir e escrever. Na Fase 1, o sistema convencional operou com um tempo de detenção hidráulica (TDH) de 27 h e uma carga orgânica volumétrica (COV) de 0,24 kg DQO m-3 d-1; e, na Fase 2, com um TDH de 9 h e uma COV de 1,36 kg DQO m-3 d-1. Já o BRAM operou, na Fase 1, com um TDH de 26 h e uma COV de 0,33 kg DQO m-3 d-1, e, na Fase 2, com um TDH de 9 h e uma COV de 0,85 kg DQO m-3 d-1. O BRAC alcançou eficiências de remoção de 66% e 74% para demanda química de oxigênio (DQO), de 97% e 83% para sólidos suspensos totais (SST) e 99% e 49% para turbidez, nas Fases 1 e 2, respectivamente. O BRAM alcançou eficiências de remoção de 92% e 79% para DQO, de 99% e 90% para SST e 100% e 92% para turbidez, nas Fases 1 e 2, respectivamente. Ambas as configurações apresentaram boa remoção de dureza total. Um ligeiro aumento no pH e na condutividade elétrica foi observado. Estes resultados indicam que o BRAM tem vantagens sobre o tratamento anaeróbio convencional na recuperação da água branca tratada, especialmente devido à alta remoção dos sólidos suspensos e ao conteúdo orgânico muito baixo presente no efluente tratado. Entretanto, os altos valores de dureza total e condutividade elétrica no efluente, não removidas pelo processo biológico, podem tornar-se um empecilho para um circuito de água branca completamente fechado. Na Etapa 2, esta pesquisa comparou a eficiência de tratamento da água branca por um BRAC e por um BRAM, sendo utilizada a água branca coletada em uma fábrica de papel reciclado. Na Fase 1, o sistema convencional operou com um TDH de 7 h e COV de 14,8 kg DQO m-3 d-1; na Fase 2, com um TDH de 14 h e uma COV de 8,1 kg DQO m-3 d-1; e, na Fase 3, com um TDH de 24 h e uma COV de 4,7 kg DQO m-3 d-1. Já o BRAM operou, na Fase 1, com um TDH de 8 h e uma COV de 13,4 kg DQO m-3 d-1; na Fase 2, com um TDH de 15 h e uma COV de 8,0 kg DQO m-3 d-1; e, na Fase 3, com um TDH de 23 h e uma COV de 4,8 kg DQO m-3 d-1. O tratamento anaeróbio da água branca da máquina de papel produzindo papel reciclado apresentou altas concentrações de ácidos orgânicos voláteis, refletindo em baixa eficiência de remoção da DQO, turbidez e dureza total. Para SST, observou-se que o BRAM apresentou desempenho superior ao BRAC. Na Etapa 3, este trabalho comparou a eficiência de tratamento e a exeqüibilidade do reúso da água branca de um biorreator anaeróbio de membranas mesofílico (BRAM 35ºC) e de um biorreator anaeróbio de membranas termofílico (BRAM 55ºC), sendo utilizada a água branca coletada em uma fábrica de papel para imprimir e escrever. O BRAM 35ºC alcançou eficiências de remoção de 70% para DQO, 95% para SST e 68% para turbidez, operando com um TDH de 10,1 h e uma COV de 1,41 kg DQO m-3 d-1. Já o BRAM 55ºC alcançou eficiências de remoção de 55% para DQO, 97% para SST e 77% para turbidez, operando com um TDH de 9,8 h e uma COV de 1,46 kg DQO m-3 d-1. Ambas as configurações apresentaram ligeira remoção de dureza total e aumento na condutividade elétrica e na cor real. Embora o BRAM 55ºC tenha alcançado uma menor eficiência de remoção da DQO, ele tem vantagens sobre o tratamento anaeróbio mesofílico, principalmente, por não necessitar do resfriamento da água branca. Com os recentes desenvolvimentos nos materiais para membrana, pode ser possível utilizar membranas poliméricas a uma temperatura de operação de 55ºC. A maior desvantagem associada ao uso de membranas de fibras poliméricas ocas submersas é que sua utilização, a longo prazo, em temperaturas elevadas não está bem documentada.Conselho Nacional de Desenvolvimento Científico e Tecnológicoapplication/pdfporUniversidade Federal de ViçosaDoutorado em Ciência FlorestalUFVBRManejo Florestal; Meio Ambiente e Conservação da Natureza; Silvicultura; Tecnologia e Utilização deTratamento anaeróbioBiorreator de membranasEfluentesCelulose e papelUltrafiltraçãoAnaerobic treatmentMembrane bioreactorEffluentsPulp and paperUltrafiltrationCNPQ::CIENCIAS AGRARIAS::RECURSOS FLORESTAIS E ENGENHARIA FLORESTAL::TECNOLOGIA E UTILIZACAO DE PRODUTOS FLORESTAISTratamento anaeróbio de efluentes de máquina de papel por biorreator convencional e biorreator de membranasAnaerobic treatment of paper machine effluents by conventional bioreactor and membrane bioreactorinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/openAccessreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALtexto completo.pdfapplication/pdf1333027https://locus.ufv.br//bitstream/123456789/516/1/texto%20completo.pdf48979ad0a0c3aaabf58139b7601d2df7MD51TEXTtexto completo.pdf.txttexto completo.pdf.txtExtracted texttext/plain314006https://locus.ufv.br//bitstream/123456789/516/2/texto%20completo.pdf.txt2f653e14c0f6623d0e6b82753c693391MD52THUMBNAILtexto completo.pdf.jpgtexto completo.pdf.jpgIM Thumbnailimage/jpeg3713https://locus.ufv.br//bitstream/123456789/516/3/texto%20completo.pdf.jpg3254cafab513d9f04dae4883d6b4d6d7MD53123456789/5162016-04-06 08:00:34.835oai:locus.ufv.br:123456789/516Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452016-04-06T11:00:34LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false |
dc.title.por.fl_str_mv |
Tratamento anaeróbio de efluentes de máquina de papel por biorreator convencional e biorreator de membranas |
dc.title.alternative.eng.fl_str_mv |
Anaerobic treatment of paper machine effluents by conventional bioreactor and membrane bioreactor |
title |
Tratamento anaeróbio de efluentes de máquina de papel por biorreator convencional e biorreator de membranas |
spellingShingle |
Tratamento anaeróbio de efluentes de máquina de papel por biorreator convencional e biorreator de membranas Loures, Ana Paula Santana Tratamento anaeróbio Biorreator de membranas Efluentes Celulose e papel Ultrafiltração Anaerobic treatment Membrane bioreactor Effluents Pulp and paper Ultrafiltration CNPQ::CIENCIAS AGRARIAS::RECURSOS FLORESTAIS E ENGENHARIA FLORESTAL::TECNOLOGIA E UTILIZACAO DE PRODUTOS FLORESTAIS |
title_short |
Tratamento anaeróbio de efluentes de máquina de papel por biorreator convencional e biorreator de membranas |
title_full |
Tratamento anaeróbio de efluentes de máquina de papel por biorreator convencional e biorreator de membranas |
title_fullStr |
Tratamento anaeróbio de efluentes de máquina de papel por biorreator convencional e biorreator de membranas |
title_full_unstemmed |
Tratamento anaeróbio de efluentes de máquina de papel por biorreator convencional e biorreator de membranas |
title_sort |
Tratamento anaeróbio de efluentes de máquina de papel por biorreator convencional e biorreator de membranas |
author |
Loures, Ana Paula Santana |
author_facet |
Loures, Ana Paula Santana |
author_role |
author |
dc.contributor.authorLattes.por.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4746316D3 |
dc.contributor.author.fl_str_mv |
Loures, Ana Paula Santana |
dc.contributor.advisor-co1.fl_str_mv |
Mounteer, Ann Honor |
dc.contributor.advisor-co1Lattes.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4723208Y4 |
dc.contributor.advisor-co2.fl_str_mv |
Chernicharo, Carlos Augusto de Lemos |
dc.contributor.advisor-co2Lattes.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4781089E2 |
dc.contributor.advisor1.fl_str_mv |
Silva, Cláudio Mudado |
dc.contributor.advisor1Lattes.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4727931T6 |
dc.contributor.referee1.fl_str_mv |
Mantovani, Hilário Cuquetto |
dc.contributor.referee1Lattes.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4727026Z7 |
dc.contributor.referee2.fl_str_mv |
Dias, João Carlos Teixeira |
dc.contributor.referee2Lattes.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4796452H1 |
contributor_str_mv |
Mounteer, Ann Honor Chernicharo, Carlos Augusto de Lemos Silva, Cláudio Mudado Mantovani, Hilário Cuquetto Dias, João Carlos Teixeira |
dc.subject.por.fl_str_mv |
Tratamento anaeróbio Biorreator de membranas Efluentes Celulose e papel Ultrafiltração |
topic |
Tratamento anaeróbio Biorreator de membranas Efluentes Celulose e papel Ultrafiltração Anaerobic treatment Membrane bioreactor Effluents Pulp and paper Ultrafiltration CNPQ::CIENCIAS AGRARIAS::RECURSOS FLORESTAIS E ENGENHARIA FLORESTAL::TECNOLOGIA E UTILIZACAO DE PRODUTOS FLORESTAIS |
dc.subject.eng.fl_str_mv |
Anaerobic treatment Membrane bioreactor Effluents Pulp and paper Ultrafiltration |
dc.subject.cnpq.fl_str_mv |
CNPQ::CIENCIAS AGRARIAS::RECURSOS FLORESTAIS E ENGENHARIA FLORESTAL::TECNOLOGIA E UTILIZACAO DE PRODUTOS FLORESTAIS |
description |
Fresh water use in paper mills varies according to the type of paper produced, but it can be as high as 100 m3 per ton of paper. In order to reduce water use in paper mills, the reclamation of whitewater is an attractive option. However, it is not always possible to completely recover the whitewater in a closed-cycle manner due to the poor quality of this stream and the possible problems caused by the accumulation of contaminants in the mill. One way to overcome this problem is to remove these contaminants prior to water recycling. The first part of this work compared the efficiency of treatment and the feasibility of whitewater reuse of an anaerobic conventional bioreactor (ACBR) and an anaerobic membrane bioreactor (AMBR), using the whitewater collected from a writing and printing paper mill. In Phase 1, the conventional system operated with a hydraulic retention time (HRT) of 27 h and a chemical oxygen demand (COD) load of 0.24 kg COD m-3 d-1; and in Phase 2, with a HRT of 9 h and a COD load of 1.36 kg COD m-3 d-1. In Phase 1, the AMBR operated with a HRT of 26 h and a COD load of 0.33 kg COD m-3 d-1; and in Phase 2, with a HRT of 9 h and a COD load of 0.85 kg COD m-3 d-1. In the ACBR configuration the removal efficiencies were 66% and 74% for COD, 97% and 83% for total suspended solids (TSS) and 99% and 49% for turbidity, in Phases 1 and 2, respectively. In the AMBR configuration the removal efficiencies were 92% and 79% for COD, 99% and 90% for TSS and 100% and 92% for turbidity, in Phases 1 and 2, respectively. Both configurations showed good removal of total hardness. A slight increase in pH and in electric conductivity was observed. These results indicated that the AMBR has advantages over the conventional anaerobic treatment for reclaiming the treated whitewater, especially due to the high removal of suspended solids and the very low organic content present in the AMBR effluent. However, high values of hardness and electric conductivity in the effluent, not removed by the biological process, might become a drawback for a fully closed whitewater circuit. The second part of this research compared the efficiency of treatment of an ACBR and an AMBR, using the whitewater collected from a recycling paper mill (Old Corrugated Cardboard). The conventional system operated, in Phase 1, with HRT of 7 h and a COD load of 14.8 kg COD m-3 d-1; in Phase 2, with a HRT of 14 h and a COD load of 8.1 kg COD m-3 d-1; and in Phase 3, with a HRT of 24 h and a COD load of 4.7 kg COD m- 3 d-1. The AMBR operated, in Phase 1, with a HRT of 8 h and a COD load of 13.4 kg COD m-3 d-1; in Phase 2, with a HRT of 15 h and a COD load of 8.0 kg COD m-3 d-1; and in Phase 3, with a HRT of 23 h and a COD load of 4.8 kg COD m-3 d-1. The anaerobic treatment of the whitewater from OCC paper machine showed high concentrations of volatile organic acids, reflecting in bad removal for COD, turbidity and total hardness. For TSS, the AMBR showed a better performance than the ACBR. The third part of this work compared the efficiency of treatment and the feasibility of whitewater reuse of a mesophilic anaerobic membrane bioreactor (35ºC AMBR) and a thermophilic anaerobic membrane bioreactor (55ºC AMBR), using the whitewater collected from a writing and printing paper mill. In the 35ºC AMBR configuration, the removal efficiencies were 70% for COD, 95% for TSS and 68% for turbidity, operating with a HRT of 10.1 h and a COD load of 1.41 kg COD m-3 d-1. In the 55ºC AMBR configuration, the removal efficiencies were 55% for COD, 97% for TSS and 77% for turbidity, operating with a HRT of 9.8 h and a COD load of 1.46 kg COD m-3 d-1. Both configurations showed slight removal of total hardness and an increase in electric conductivity and real colour. Although COD removal at 55ºC was lower than at 35ºC, the 55ºC AMBR has advantages over the mesophilic anaerobic treatment mainly because it does not need the whitewater cooling. With recent developments in membrane materials, it may be possible to use polymeric membranes at an operating temperature of 55ºC. The major disadvantage associated with using polymeric submerged hollow fiber membranes is that their long-term use at elevated temperatures has not been well documented. |
publishDate |
2007 |
dc.date.issued.fl_str_mv |
2007-10-08 |
dc.date.available.fl_str_mv |
2008-05-23 2015-03-26T12:26:55Z |
dc.date.accessioned.fl_str_mv |
2015-03-26T12:26:55Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
LOURES, Ana Paula Santana. Anaerobic treatment of paper machine effluents by conventional bioreactor and membrane bioreactor. 2007. 127 f. Tese (Doutorado em Manejo Florestal; Meio Ambiente e Conservação da Natureza; Silvicultura; Tecnologia e Utilização de) - Universidade Federal de Viçosa, Viçosa, 2007. |
dc.identifier.uri.fl_str_mv |
http://locus.ufv.br/handle/123456789/516 |
identifier_str_mv |
LOURES, Ana Paula Santana. Anaerobic treatment of paper machine effluents by conventional bioreactor and membrane bioreactor. 2007. 127 f. Tese (Doutorado em Manejo Florestal; Meio Ambiente e Conservação da Natureza; Silvicultura; Tecnologia e Utilização de) - Universidade Federal de Viçosa, Viçosa, 2007. |
url |
http://locus.ufv.br/handle/123456789/516 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Viçosa |
dc.publisher.program.fl_str_mv |
Doutorado em Ciência Florestal |
dc.publisher.initials.fl_str_mv |
UFV |
dc.publisher.country.fl_str_mv |
BR |
dc.publisher.department.fl_str_mv |
Manejo Florestal; Meio Ambiente e Conservação da Natureza; Silvicultura; Tecnologia e Utilização de |
publisher.none.fl_str_mv |
Universidade Federal de Viçosa |
dc.source.none.fl_str_mv |
reponame:LOCUS Repositório Institucional da UFV instname:Universidade Federal de Viçosa (UFV) instacron:UFV |
instname_str |
Universidade Federal de Viçosa (UFV) |
instacron_str |
UFV |
institution |
UFV |
reponame_str |
LOCUS Repositório Institucional da UFV |
collection |
LOCUS Repositório Institucional da UFV |
bitstream.url.fl_str_mv |
https://locus.ufv.br//bitstream/123456789/516/1/texto%20completo.pdf https://locus.ufv.br//bitstream/123456789/516/2/texto%20completo.pdf.txt https://locus.ufv.br//bitstream/123456789/516/3/texto%20completo.pdf.jpg |
bitstream.checksum.fl_str_mv |
48979ad0a0c3aaabf58139b7601d2df7 2f653e14c0f6623d0e6b82753c693391 3254cafab513d9f04dae4883d6b4d6d7 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV) |
repository.mail.fl_str_mv |
fabiojreis@ufv.br |
_version_ |
1801213061973934080 |