Comparing two different spectroscopic techniques for the characterization of soil iron oxides: diffuse versus bi-directional reflectance

Detalhes bibliográficos
Autor(a) principal: Fernandes, R. B. A.
Data de Publicação: 2009
Outros Autores: Sellitto, V. M., Barrón, V., Colombo, C.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: LOCUS Repositório Institucional da UFV
Texto Completo: https://doi.org/10.1016/j.geoderma.2008.11.020
http://www.locus.ufv.br/handle/123456789/22228
Resumo: Soil spectra, either from bi-directional reflectance (BDRS) and diffuse reflectance spectroscopy (DRS), enable the detection of small amount of hematite and goethite across the VIS-NIR region that provides information regarding the iron oxide minerals content. Good relations between the spectral parameter useful in understanding in iron oxides contents was observed with bi-directional reflectance (BDRS) and diffuse reflectance spectroscopy (DRS) of strongly and moderate weathered soils. Studied soils were Terra Rossa from Mediterranean area derived from karstic dolomitic calcareous environment and a large variety of Oxisols derived from different parent materials ranging from lateritic sediments to basaltic and calcareous rocks from Brazil. The spectra of soil samples were recorded in the laboratory on air-dried-sieved soils. The two different spectra were parameterized by using the amplitude of selected bands in the second derivative of the spectrum of the Kubelka–Munk function and by calculating the Munsell color attributes. Hematite and goethite shown very clearly band positions and second-derivative is more sensitive in detecting these two Fe oxides than Munsell color attributes. Significant correlations were found between the spectral and color parameters calculated from the two different spectra. Irrespective of the method, soil goethite and hematite contents were significantly correlated with the amplitudes of the characteristic second-derivative spectral bands at ∼ 420 and ∼ 535 nm, respectively. The hematite content was correlated with some of the Munsell color parameters, whereas the goethite content was not. Our results suggest that laboratory bi-directional reflectance spectroscopy is as useful as diffuse reflectance spectroscopy to characterize soil Fe oxides. Future work can potentially involve the execution of field-level studies employing a portable spectroradiometer to estimate soil Fe oxides composition. This result supports also the utilization of a sensitive airborne hyperspectral sensor to rapidly and quantitatively evaluate spatial soil information concerning iron oxides content.
id UFV_473be7396a4302c4f559acb4a2a16cc3
oai_identifier_str oai:locus.ufv.br:123456789/22228
network_acronym_str UFV
network_name_str LOCUS Repositório Institucional da UFV
repository_id_str 2145
spelling Fernandes, R. B. A.Sellitto, V. M.Barrón, V.Colombo, C.2018-10-10T16:25:39Z2018-10-10T16:25:39Z2009-02-1500167061https://doi.org/10.1016/j.geoderma.2008.11.020http://www.locus.ufv.br/handle/123456789/22228Soil spectra, either from bi-directional reflectance (BDRS) and diffuse reflectance spectroscopy (DRS), enable the detection of small amount of hematite and goethite across the VIS-NIR region that provides information regarding the iron oxide minerals content. Good relations between the spectral parameter useful in understanding in iron oxides contents was observed with bi-directional reflectance (BDRS) and diffuse reflectance spectroscopy (DRS) of strongly and moderate weathered soils. Studied soils were Terra Rossa from Mediterranean area derived from karstic dolomitic calcareous environment and a large variety of Oxisols derived from different parent materials ranging from lateritic sediments to basaltic and calcareous rocks from Brazil. The spectra of soil samples were recorded in the laboratory on air-dried-sieved soils. The two different spectra were parameterized by using the amplitude of selected bands in the second derivative of the spectrum of the Kubelka–Munk function and by calculating the Munsell color attributes. Hematite and goethite shown very clearly band positions and second-derivative is more sensitive in detecting these two Fe oxides than Munsell color attributes. Significant correlations were found between the spectral and color parameters calculated from the two different spectra. Irrespective of the method, soil goethite and hematite contents were significantly correlated with the amplitudes of the characteristic second-derivative spectral bands at ∼ 420 and ∼ 535 nm, respectively. The hematite content was correlated with some of the Munsell color parameters, whereas the goethite content was not. Our results suggest that laboratory bi-directional reflectance spectroscopy is as useful as diffuse reflectance spectroscopy to characterize soil Fe oxides. Future work can potentially involve the execution of field-level studies employing a portable spectroradiometer to estimate soil Fe oxides composition. This result supports also the utilization of a sensitive airborne hyperspectral sensor to rapidly and quantitatively evaluate spatial soil information concerning iron oxides content.engGeodermav. 149, n. 1– 2, p. 2- 9, fev. 2009Elsevier B.V.info:eu-repo/semantics/openAccessRemote sensingDiffuse reflectanceBi-directional reflectanceIron oxidesGoethiteHematiteComparing two different spectroscopic techniques for the characterization of soil iron oxides: diffuse versus bi-directional reflectanceinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALartigo.pdfartigo.pdftexto completoapplication/pdf849043https://locus.ufv.br//bitstream/123456789/22228/1/artigo.pdf00f7d0100d91cc7325e3114c893a4112MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://locus.ufv.br//bitstream/123456789/22228/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52123456789/222282018-10-10 13:31:31.735oai:locus.ufv.br:123456789/22228Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452018-10-10T16:31:31LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false
dc.title.en.fl_str_mv Comparing two different spectroscopic techniques for the characterization of soil iron oxides: diffuse versus bi-directional reflectance
title Comparing two different spectroscopic techniques for the characterization of soil iron oxides: diffuse versus bi-directional reflectance
spellingShingle Comparing two different spectroscopic techniques for the characterization of soil iron oxides: diffuse versus bi-directional reflectance
Fernandes, R. B. A.
Remote sensing
Diffuse reflectance
Bi-directional reflectance
Iron oxides
Goethite
Hematite
title_short Comparing two different spectroscopic techniques for the characterization of soil iron oxides: diffuse versus bi-directional reflectance
title_full Comparing two different spectroscopic techniques for the characterization of soil iron oxides: diffuse versus bi-directional reflectance
title_fullStr Comparing two different spectroscopic techniques for the characterization of soil iron oxides: diffuse versus bi-directional reflectance
title_full_unstemmed Comparing two different spectroscopic techniques for the characterization of soil iron oxides: diffuse versus bi-directional reflectance
title_sort Comparing two different spectroscopic techniques for the characterization of soil iron oxides: diffuse versus bi-directional reflectance
author Fernandes, R. B. A.
author_facet Fernandes, R. B. A.
Sellitto, V. M.
Barrón, V.
Colombo, C.
author_role author
author2 Sellitto, V. M.
Barrón, V.
Colombo, C.
author2_role author
author
author
dc.contributor.author.fl_str_mv Fernandes, R. B. A.
Sellitto, V. M.
Barrón, V.
Colombo, C.
dc.subject.pt-BR.fl_str_mv Remote sensing
Diffuse reflectance
Bi-directional reflectance
Iron oxides
Goethite
Hematite
topic Remote sensing
Diffuse reflectance
Bi-directional reflectance
Iron oxides
Goethite
Hematite
description Soil spectra, either from bi-directional reflectance (BDRS) and diffuse reflectance spectroscopy (DRS), enable the detection of small amount of hematite and goethite across the VIS-NIR region that provides information regarding the iron oxide minerals content. Good relations between the spectral parameter useful in understanding in iron oxides contents was observed with bi-directional reflectance (BDRS) and diffuse reflectance spectroscopy (DRS) of strongly and moderate weathered soils. Studied soils were Terra Rossa from Mediterranean area derived from karstic dolomitic calcareous environment and a large variety of Oxisols derived from different parent materials ranging from lateritic sediments to basaltic and calcareous rocks from Brazil. The spectra of soil samples were recorded in the laboratory on air-dried-sieved soils. The two different spectra were parameterized by using the amplitude of selected bands in the second derivative of the spectrum of the Kubelka–Munk function and by calculating the Munsell color attributes. Hematite and goethite shown very clearly band positions and second-derivative is more sensitive in detecting these two Fe oxides than Munsell color attributes. Significant correlations were found between the spectral and color parameters calculated from the two different spectra. Irrespective of the method, soil goethite and hematite contents were significantly correlated with the amplitudes of the characteristic second-derivative spectral bands at ∼ 420 and ∼ 535 nm, respectively. The hematite content was correlated with some of the Munsell color parameters, whereas the goethite content was not. Our results suggest that laboratory bi-directional reflectance spectroscopy is as useful as diffuse reflectance spectroscopy to characterize soil Fe oxides. Future work can potentially involve the execution of field-level studies employing a portable spectroradiometer to estimate soil Fe oxides composition. This result supports also the utilization of a sensitive airborne hyperspectral sensor to rapidly and quantitatively evaluate spatial soil information concerning iron oxides content.
publishDate 2009
dc.date.issued.fl_str_mv 2009-02-15
dc.date.accessioned.fl_str_mv 2018-10-10T16:25:39Z
dc.date.available.fl_str_mv 2018-10-10T16:25:39Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://doi.org/10.1016/j.geoderma.2008.11.020
http://www.locus.ufv.br/handle/123456789/22228
dc.identifier.issn.none.fl_str_mv 00167061
identifier_str_mv 00167061
url https://doi.org/10.1016/j.geoderma.2008.11.020
http://www.locus.ufv.br/handle/123456789/22228
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartofseries.pt-BR.fl_str_mv v. 149, n. 1– 2, p. 2- 9, fev. 2009
dc.rights.driver.fl_str_mv Elsevier B.V.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Elsevier B.V.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Geoderma
publisher.none.fl_str_mv Geoderma
dc.source.none.fl_str_mv reponame:LOCUS Repositório Institucional da UFV
instname:Universidade Federal de Viçosa (UFV)
instacron:UFV
instname_str Universidade Federal de Viçosa (UFV)
instacron_str UFV
institution UFV
reponame_str LOCUS Repositório Institucional da UFV
collection LOCUS Repositório Institucional da UFV
bitstream.url.fl_str_mv https://locus.ufv.br//bitstream/123456789/22228/1/artigo.pdf
https://locus.ufv.br//bitstream/123456789/22228/2/license.txt
bitstream.checksum.fl_str_mv 00f7d0100d91cc7325e3114c893a4112
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)
repository.mail.fl_str_mv fabiojreis@ufv.br
_version_ 1801212884613595136