Influência genotípica de estirpes de Bacillus cereus na adesão e na resistência a sanitizantes químicos

Detalhes bibliográficos
Autor(a) principal: Sá, João Paulo Natalino de
Data de Publicação: 2013
Tipo de documento: Dissertação
Idioma: por
Título da fonte: LOCUS Repositório Institucional da UFV
Texto Completo: http://locus.ufv.br/handle/123456789/2930
Resumo: Among several micro-organisms contaminants in food industry, Bacillus cereus is a pathogen that may cause poisoning emetic and/or diarrheal and, furthermore, spoil foods production of proteolytic or lipolytic enzymes. In this research, the multiplication rate (&#956;), the lag time (&#955;) and maximum multiplication rate (&#956;max) of four genotypes of Bacillus cereus with genes for the production from different enterotoxins were evaluated at temperatures of 10 °C, 15 °C, 25 °C, 32 °C and 42 °C. Multiplying quantitation was performed byspectrophotometer, with readings from optical density at 600 nm. The DMFit software was used to fit the data to curves of Baranyi and Roberts model. The maximum multiplication rate (&#956;max) was evaluated by modified Ratkowsky et al. model. Also in the experiment, adhesion of genotypes of B. cereus, vegetative cell or spore, to stainless steel 304 # 4, at 10 ° C and 32 ° C was evaluated. The interaction between the surface of stainless steel and genotypes was studied by tension interfacial characteristics and measure of the contact angle of surfaces. In addition, we evaluated the removal of genotypes adhered to the stainless steel surface using six hygienic procedures through simulated use test of cleaning in place (CIP). As result, no significant effect was found (p> 0.05) for values of &#956; between genotypes, at the same temperature. However, was observed significant effects (p <0.05) among genotypes for this parameter (&#956;) for different incubation temperatures (10 °C, 15 °C, 25 °C, 32 ° C and 42 °C) and also for the lag time (&#955;). At 10 ° C, the values of &#956; and &#956;max were lower and the lag time (&#955;) was higher for all vegetative cells of genotypes. At 32 °C there was an opposite behavior for all kinetic parameters. In this study, no difference was observed (p> 0.05) in the ability of adhesion to stainless steel between the genotypes at the same temperature (10 °C and 32 °C). However, significant differences (p <0.05) in adhesion in relation to physiological structures was observed for temperatures of 10 °C or 32 °C. At 10 °C, the vegetative form adhered less than sporulated. This may correlate to low values of &#956; and &#956;max, and long period of &#955;. The variation of 22 °C in temperature was sufficient for that adhesion of all vegetative cells genotypes were almost two log cycles higher than at 10 °C, confirming the importance and influence of temperature on adhesion process. The effect of temperature on the adhesion of vegetative cells and spores of B. cereus, can be explained, among other factors, by hydrophobic interactions. These interactions are governed by the entropy of the system, thus increasing temperature favors the entropic component. Thus, when temperature increases the hydrophobic interactions are become stronger, favoring adhesion. According to results, removal of spores and vegetative cells for genotypes of B. cereus is dependent (p <0.05) of the treatment applied, however, the action of these agents was not affected by physiological structure (vegetative and spore), or by genotypes. Formulations containing sodium dodecylbenzene sulfonate combined with sodium dichloroisocyanurate or peracetic acid were more efficient, resulting in hygienization of stainless steel with a count of B. cereus below 50 cfu.cm-2. We observed that all genotypes in the vegetative form were considered hydrophilic (&#916;Gsws TOT> 0), independent of temperature (10 °C and 32 °C). However, all genotypes in the spore form were hydrophobic (&#916;Gsws TOT <0). The adhesion to stainless steel was thermodynamically favorable (&#916;Gadhesion < 0) for all the genotypes at 10 °C and 32 °C for both physiological structures except for the cell vegetative genotype G4 at 10 °C and 32 °C, where the adhesion was thermodynamically unfavorable (&#916;Gadhesion > 0).
id UFV_47e83cd988b8a23aa89a0e2cafec3372
oai_identifier_str oai:locus.ufv.br:123456789/2930
network_acronym_str UFV
network_name_str LOCUS Repositório Institucional da UFV
repository_id_str 2145
spelling Sá, João Paulo Natalino dehttp://lattes.cnpq.br/0461884131306937Peña, Wilmer Edgard Luerahttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4730660Z8Araújo, Emiliane Andradehttp://lattes.cnpq.br/0102165680976889Andrade, Nélio José dehttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4788281Y5Pires, Ana Clarissa dos Santoshttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4776833U9Bernardes, Patrícia Camposhttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4711525D72015-03-26T13:13:28Z2013-11-192015-03-26T13:13:28Z2013-03-20SÁ, João Paulo Natalino de. Genotypic influence of Bacillus cereus strains in adhesion and resistance to chemical sanitizing. 2013. 80 f. Dissertação (Mestrado em Ciência de Alimentos; Tecnologia de Alimentos; Engenharia de Alimentos) - Universidade Federal de Viçosa, Viçosa, 2013.http://locus.ufv.br/handle/123456789/2930Among several micro-organisms contaminants in food industry, Bacillus cereus is a pathogen that may cause poisoning emetic and/or diarrheal and, furthermore, spoil foods production of proteolytic or lipolytic enzymes. In this research, the multiplication rate (&#956;), the lag time (&#955;) and maximum multiplication rate (&#956;max) of four genotypes of Bacillus cereus with genes for the production from different enterotoxins were evaluated at temperatures of 10 °C, 15 °C, 25 °C, 32 °C and 42 °C. Multiplying quantitation was performed byspectrophotometer, with readings from optical density at 600 nm. The DMFit software was used to fit the data to curves of Baranyi and Roberts model. The maximum multiplication rate (&#956;max) was evaluated by modified Ratkowsky et al. model. Also in the experiment, adhesion of genotypes of B. cereus, vegetative cell or spore, to stainless steel 304 # 4, at 10 ° C and 32 ° C was evaluated. The interaction between the surface of stainless steel and genotypes was studied by tension interfacial characteristics and measure of the contact angle of surfaces. In addition, we evaluated the removal of genotypes adhered to the stainless steel surface using six hygienic procedures through simulated use test of cleaning in place (CIP). As result, no significant effect was found (p> 0.05) for values of &#956; between genotypes, at the same temperature. However, was observed significant effects (p <0.05) among genotypes for this parameter (&#956;) for different incubation temperatures (10 °C, 15 °C, 25 °C, 32 ° C and 42 °C) and also for the lag time (&#955;). At 10 ° C, the values of &#956; and &#956;max were lower and the lag time (&#955;) was higher for all vegetative cells of genotypes. At 32 °C there was an opposite behavior for all kinetic parameters. In this study, no difference was observed (p> 0.05) in the ability of adhesion to stainless steel between the genotypes at the same temperature (10 °C and 32 °C). However, significant differences (p <0.05) in adhesion in relation to physiological structures was observed for temperatures of 10 °C or 32 °C. At 10 °C, the vegetative form adhered less than sporulated. This may correlate to low values of &#956; and &#956;max, and long period of &#955;. The variation of 22 °C in temperature was sufficient for that adhesion of all vegetative cells genotypes were almost two log cycles higher than at 10 °C, confirming the importance and influence of temperature on adhesion process. The effect of temperature on the adhesion of vegetative cells and spores of B. cereus, can be explained, among other factors, by hydrophobic interactions. These interactions are governed by the entropy of the system, thus increasing temperature favors the entropic component. Thus, when temperature increases the hydrophobic interactions are become stronger, favoring adhesion. According to results, removal of spores and vegetative cells for genotypes of B. cereus is dependent (p <0.05) of the treatment applied, however, the action of these agents was not affected by physiological structure (vegetative and spore), or by genotypes. Formulations containing sodium dodecylbenzene sulfonate combined with sodium dichloroisocyanurate or peracetic acid were more efficient, resulting in hygienization of stainless steel with a count of B. cereus below 50 cfu.cm-2. We observed that all genotypes in the vegetative form were considered hydrophilic (&#916;Gsws TOT> 0), independent of temperature (10 °C and 32 °C). However, all genotypes in the spore form were hydrophobic (&#916;Gsws TOT <0). The adhesion to stainless steel was thermodynamically favorable (&#916;Gadhesion < 0) for all the genotypes at 10 °C and 32 °C for both physiological structures except for the cell vegetative genotype G4 at 10 °C and 32 °C, where the adhesion was thermodynamically unfavorable (&#916;Gadhesion > 0).Dentre os diversos micro-organismos contaminantes na indústria de alimentos, encontra-se Bacillus cereus, um patógeno que pode causar intoxicação emética,e ou, diarreica e, ainda, deteriorar alimentos pela produção de enzimas lipolíticas ou proteolíticas.Nessa pesquisa, a taxa de multiplicação (&#956;), o tempo de lag (&#955;) de quatro genótipos deste micro-organismo com genes para a produção de diferentes enterotoxinas, foi avaliado ás temperaturas de 10 °C, 15 °C, 25 °C, 32 °C e 42 °C. A quantificação da multiplicação foi realizada utilizando espectrofotômetro, com leitura de densidade ótica a 600nm. O programa DMFit foi usado para ajustar os dados das curvas ao modelo de Baranyi e Roberts. A velocidade especifica da multiplicação máxima (&#956;max) foi determinada pelo modelo de Ratkowsky e colaboradores modificado. Também no experimento, a adesão dos genótipos de B. cereus na forma vegetativa e esporulada á superfície de aço inoxidável 304 # 4, a 10 ° e 32 °C foi avaliada. Além disso, avaliou-se a remoção dos genótipos aderidos ao aço inoxidável frente a seis procedimentos de higienização através de teste de uso simulado de limpeza CIP. Como resultado, não se constatou efeito significativo (p>0,05) para os valores de &#956; entre os genótipos à uma mesma temperatura. Porém, houve efeito (p<0,05) entre os genótipos para esse parâmetro cinético (&#956;), nas diferentes temperaturas de incubação (10 °C, 15 °C, 25 °C, 32 °C e 42 °C ) e, também no tempo de lag (&#955;). A 10 °C, os valores de &#956; foram menores e a fase de lag (&#955;) foi maior para todas as células vegetativas. A 32 °C observouse um comportamento oposto para todos os parâmetros cinéticos. Nesta pesquisa, não se constatou diferença (p>0,05) na capacidade de adesão ao aço inoxidável entre os genótipos à mesma temperatura (10 °C e 32 °C). Porém, houve diferença (p<0,05) na adesão das estruturas fisiológicas (vegetativa e esporulada) em relação às temperaturas de 10 °C e 32 °C. A 10 °C, a forma vegetativa aderiu menos do que a esporulada. Este fato pode correlacionar-se as baixas taxas de &#956;, e ao longo período de &#955;. A variação de 22 °C na temperatura foi suficiente para que a adesão das células vegetativas de todos os genótipos fosse quase dois ciclos logarítmicos maior em comparação a 10 °C, confirmando a importância e a influência da temperatura no processo de adesão. A remoção de células vegetativas e esporuladas para os genótipos de B cereus é dependente (p<0,05) do tratamento aplicado, porém, a ação destes agentes não foi afetada pelas estruturas fisiológicas, nem pelos genótipos. As formulações contendo dodecilbenzeno sulfonato de sódio (DBSS) e dicloroisocianurato de sódio, ou DBSS e ácido peracético, foram as mais eficientes, resultando na higienização do aço inoxidável com uma contagem de B. cereus abaixo de 50 UFC/cm2. Observou-se que todos os genótipos na estrutura vegetativa, foram consideradas hidrofílicos (&#916;Gsws TOT >0) independente da temperatura 10 °C e 32 C). Porém, todos os genótipos esporulados, foram hidrófóbicos (&#916;Gsws TOT <0). Pode-se predizer que a adesão foi termodinamicamente favorável (&#916;Gadhesion < 0) ao aço inoxidável, para os genótipos estudados a 10 °C e 32 °C, para ambas as estruturas fisiológicas, exceto para célula vegetative do genótipo G4, a 10 °C e 32 °C, onde a adesão foi termodinâmicamente desfavorável (&#916;Gadhesion > 0).Este trabalho mostrou que fatores físico-químicos e microbiológicos são complementares no fenômeno de adesão bacteriana.Conselho Nacional de Desenvolvimento Científico e Tecnológicoapplication/pdfporUniversidade Federal de ViçosaMestrado em Ciência e Tecnologia de AlimentosUFVBRCiência de Alimentos; Tecnologia de Alimentos; Engenharia de AlimentosLaticíniosBacillus cereusAdesão bacterianaResistência a sanitizantesDairyBacillus cereusAdhesion bacterialResistance to sanitizingCNPQ::CIENCIAS AGRARIAS::CIENCIA E TECNOLOGIA DE ALIMENTOS::CIENCIA DE ALIMENTOSInfluência genotípica de estirpes de Bacillus cereus na adesão e na resistência a sanitizantes químicosGenotypic influence of Bacillus cereus strains in adhesion and resistance to chemical sanitizinginfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALtexto completo.pdfapplication/pdf1084689https://locus.ufv.br//bitstream/123456789/2930/1/texto%20completo.pdf18a67da9fba516ad97d7da97ef6a5930MD51TEXTtexto completo.pdf.txttexto completo.pdf.txtExtracted texttext/plain132385https://locus.ufv.br//bitstream/123456789/2930/2/texto%20completo.pdf.txtc09e305c5094c2f9a92325aa509b90aaMD52THUMBNAILtexto completo.pdf.jpgtexto completo.pdf.jpgIM Thumbnailimage/jpeg3641https://locus.ufv.br//bitstream/123456789/2930/3/texto%20completo.pdf.jpg3e5f0692a10bb640e9deb6176b66281bMD53123456789/29302016-04-08 23:16:34.23oai:locus.ufv.br:123456789/2930Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452016-04-09T02:16:34LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false
dc.title.por.fl_str_mv Influência genotípica de estirpes de Bacillus cereus na adesão e na resistência a sanitizantes químicos
dc.title.alternative.eng.fl_str_mv Genotypic influence of Bacillus cereus strains in adhesion and resistance to chemical sanitizing
title Influência genotípica de estirpes de Bacillus cereus na adesão e na resistência a sanitizantes químicos
spellingShingle Influência genotípica de estirpes de Bacillus cereus na adesão e na resistência a sanitizantes químicos
Sá, João Paulo Natalino de
Laticínios
Bacillus cereus
Adesão bacteriana
Resistência a sanitizantes
Dairy
Bacillus cereus
Adhesion bacterial
Resistance to sanitizing
CNPQ::CIENCIAS AGRARIAS::CIENCIA E TECNOLOGIA DE ALIMENTOS::CIENCIA DE ALIMENTOS
title_short Influência genotípica de estirpes de Bacillus cereus na adesão e na resistência a sanitizantes químicos
title_full Influência genotípica de estirpes de Bacillus cereus na adesão e na resistência a sanitizantes químicos
title_fullStr Influência genotípica de estirpes de Bacillus cereus na adesão e na resistência a sanitizantes químicos
title_full_unstemmed Influência genotípica de estirpes de Bacillus cereus na adesão e na resistência a sanitizantes químicos
title_sort Influência genotípica de estirpes de Bacillus cereus na adesão e na resistência a sanitizantes químicos
author Sá, João Paulo Natalino de
author_facet Sá, João Paulo Natalino de
author_role author
dc.contributor.authorLattes.por.fl_str_mv http://lattes.cnpq.br/0461884131306937
dc.contributor.author.fl_str_mv Sá, João Paulo Natalino de
dc.contributor.advisor-co1.fl_str_mv Peña, Wilmer Edgard Luera
dc.contributor.advisor-co1Lattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4730660Z8
dc.contributor.advisor-co2.fl_str_mv Araújo, Emiliane Andrade
dc.contributor.advisor-co2Lattes.fl_str_mv http://lattes.cnpq.br/0102165680976889
dc.contributor.advisor1.fl_str_mv Andrade, Nélio José de
dc.contributor.advisor1Lattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4788281Y5
dc.contributor.referee1.fl_str_mv Pires, Ana Clarissa dos Santos
dc.contributor.referee1Lattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4776833U9
dc.contributor.referee2.fl_str_mv Bernardes, Patrícia Campos
dc.contributor.referee2Lattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4711525D7
contributor_str_mv Peña, Wilmer Edgard Luera
Araújo, Emiliane Andrade
Andrade, Nélio José de
Pires, Ana Clarissa dos Santos
Bernardes, Patrícia Campos
dc.subject.por.fl_str_mv Laticínios
Bacillus cereus
Adesão bacteriana
Resistência a sanitizantes
topic Laticínios
Bacillus cereus
Adesão bacteriana
Resistência a sanitizantes
Dairy
Bacillus cereus
Adhesion bacterial
Resistance to sanitizing
CNPQ::CIENCIAS AGRARIAS::CIENCIA E TECNOLOGIA DE ALIMENTOS::CIENCIA DE ALIMENTOS
dc.subject.eng.fl_str_mv Dairy
Bacillus cereus
Adhesion bacterial
Resistance to sanitizing
dc.subject.cnpq.fl_str_mv CNPQ::CIENCIAS AGRARIAS::CIENCIA E TECNOLOGIA DE ALIMENTOS::CIENCIA DE ALIMENTOS
description Among several micro-organisms contaminants in food industry, Bacillus cereus is a pathogen that may cause poisoning emetic and/or diarrheal and, furthermore, spoil foods production of proteolytic or lipolytic enzymes. In this research, the multiplication rate (&#956;), the lag time (&#955;) and maximum multiplication rate (&#956;max) of four genotypes of Bacillus cereus with genes for the production from different enterotoxins were evaluated at temperatures of 10 °C, 15 °C, 25 °C, 32 °C and 42 °C. Multiplying quantitation was performed byspectrophotometer, with readings from optical density at 600 nm. The DMFit software was used to fit the data to curves of Baranyi and Roberts model. The maximum multiplication rate (&#956;max) was evaluated by modified Ratkowsky et al. model. Also in the experiment, adhesion of genotypes of B. cereus, vegetative cell or spore, to stainless steel 304 # 4, at 10 ° C and 32 ° C was evaluated. The interaction between the surface of stainless steel and genotypes was studied by tension interfacial characteristics and measure of the contact angle of surfaces. In addition, we evaluated the removal of genotypes adhered to the stainless steel surface using six hygienic procedures through simulated use test of cleaning in place (CIP). As result, no significant effect was found (p> 0.05) for values of &#956; between genotypes, at the same temperature. However, was observed significant effects (p <0.05) among genotypes for this parameter (&#956;) for different incubation temperatures (10 °C, 15 °C, 25 °C, 32 ° C and 42 °C) and also for the lag time (&#955;). At 10 ° C, the values of &#956; and &#956;max were lower and the lag time (&#955;) was higher for all vegetative cells of genotypes. At 32 °C there was an opposite behavior for all kinetic parameters. In this study, no difference was observed (p> 0.05) in the ability of adhesion to stainless steel between the genotypes at the same temperature (10 °C and 32 °C). However, significant differences (p <0.05) in adhesion in relation to physiological structures was observed for temperatures of 10 °C or 32 °C. At 10 °C, the vegetative form adhered less than sporulated. This may correlate to low values of &#956; and &#956;max, and long period of &#955;. The variation of 22 °C in temperature was sufficient for that adhesion of all vegetative cells genotypes were almost two log cycles higher than at 10 °C, confirming the importance and influence of temperature on adhesion process. The effect of temperature on the adhesion of vegetative cells and spores of B. cereus, can be explained, among other factors, by hydrophobic interactions. These interactions are governed by the entropy of the system, thus increasing temperature favors the entropic component. Thus, when temperature increases the hydrophobic interactions are become stronger, favoring adhesion. According to results, removal of spores and vegetative cells for genotypes of B. cereus is dependent (p <0.05) of the treatment applied, however, the action of these agents was not affected by physiological structure (vegetative and spore), or by genotypes. Formulations containing sodium dodecylbenzene sulfonate combined with sodium dichloroisocyanurate or peracetic acid were more efficient, resulting in hygienization of stainless steel with a count of B. cereus below 50 cfu.cm-2. We observed that all genotypes in the vegetative form were considered hydrophilic (&#916;Gsws TOT> 0), independent of temperature (10 °C and 32 °C). However, all genotypes in the spore form were hydrophobic (&#916;Gsws TOT <0). The adhesion to stainless steel was thermodynamically favorable (&#916;Gadhesion < 0) for all the genotypes at 10 °C and 32 °C for both physiological structures except for the cell vegetative genotype G4 at 10 °C and 32 °C, where the adhesion was thermodynamically unfavorable (&#916;Gadhesion > 0).
publishDate 2013
dc.date.available.fl_str_mv 2013-11-19
2015-03-26T13:13:28Z
dc.date.issued.fl_str_mv 2013-03-20
dc.date.accessioned.fl_str_mv 2015-03-26T13:13:28Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv SÁ, João Paulo Natalino de. Genotypic influence of Bacillus cereus strains in adhesion and resistance to chemical sanitizing. 2013. 80 f. Dissertação (Mestrado em Ciência de Alimentos; Tecnologia de Alimentos; Engenharia de Alimentos) - Universidade Federal de Viçosa, Viçosa, 2013.
dc.identifier.uri.fl_str_mv http://locus.ufv.br/handle/123456789/2930
identifier_str_mv SÁ, João Paulo Natalino de. Genotypic influence of Bacillus cereus strains in adhesion and resistance to chemical sanitizing. 2013. 80 f. Dissertação (Mestrado em Ciência de Alimentos; Tecnologia de Alimentos; Engenharia de Alimentos) - Universidade Federal de Viçosa, Viçosa, 2013.
url http://locus.ufv.br/handle/123456789/2930
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Viçosa
dc.publisher.program.fl_str_mv Mestrado em Ciência e Tecnologia de Alimentos
dc.publisher.initials.fl_str_mv UFV
dc.publisher.country.fl_str_mv BR
dc.publisher.department.fl_str_mv Ciência de Alimentos; Tecnologia de Alimentos; Engenharia de Alimentos
publisher.none.fl_str_mv Universidade Federal de Viçosa
dc.source.none.fl_str_mv reponame:LOCUS Repositório Institucional da UFV
instname:Universidade Federal de Viçosa (UFV)
instacron:UFV
instname_str Universidade Federal de Viçosa (UFV)
instacron_str UFV
institution UFV
reponame_str LOCUS Repositório Institucional da UFV
collection LOCUS Repositório Institucional da UFV
bitstream.url.fl_str_mv https://locus.ufv.br//bitstream/123456789/2930/1/texto%20completo.pdf
https://locus.ufv.br//bitstream/123456789/2930/2/texto%20completo.pdf.txt
https://locus.ufv.br//bitstream/123456789/2930/3/texto%20completo.pdf.jpg
bitstream.checksum.fl_str_mv 18a67da9fba516ad97d7da97ef6a5930
c09e305c5094c2f9a92325aa509b90aa
3e5f0692a10bb640e9deb6176b66281b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)
repository.mail.fl_str_mv fabiojreis@ufv.br
_version_ 1801212863717572608