Influência genotípica de estirpes de Bacillus cereus na adesão e na resistência a sanitizantes químicos
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | LOCUS Repositório Institucional da UFV |
Texto Completo: | http://locus.ufv.br/handle/123456789/2930 |
Resumo: | Among several micro-organisms contaminants in food industry, Bacillus cereus is a pathogen that may cause poisoning emetic and/or diarrheal and, furthermore, spoil foods production of proteolytic or lipolytic enzymes. In this research, the multiplication rate (μ), the lag time (λ) and maximum multiplication rate (μmax) of four genotypes of Bacillus cereus with genes for the production from different enterotoxins were evaluated at temperatures of 10 °C, 15 °C, 25 °C, 32 °C and 42 °C. Multiplying quantitation was performed byspectrophotometer, with readings from optical density at 600 nm. The DMFit software was used to fit the data to curves of Baranyi and Roberts model. The maximum multiplication rate (μmax) was evaluated by modified Ratkowsky et al. model. Also in the experiment, adhesion of genotypes of B. cereus, vegetative cell or spore, to stainless steel 304 # 4, at 10 ° C and 32 ° C was evaluated. The interaction between the surface of stainless steel and genotypes was studied by tension interfacial characteristics and measure of the contact angle of surfaces. In addition, we evaluated the removal of genotypes adhered to the stainless steel surface using six hygienic procedures through simulated use test of cleaning in place (CIP). As result, no significant effect was found (p> 0.05) for values of μ between genotypes, at the same temperature. However, was observed significant effects (p <0.05) among genotypes for this parameter (μ) for different incubation temperatures (10 °C, 15 °C, 25 °C, 32 ° C and 42 °C) and also for the lag time (λ). At 10 ° C, the values of μ and μmax were lower and the lag time (λ) was higher for all vegetative cells of genotypes. At 32 °C there was an opposite behavior for all kinetic parameters. In this study, no difference was observed (p> 0.05) in the ability of adhesion to stainless steel between the genotypes at the same temperature (10 °C and 32 °C). However, significant differences (p <0.05) in adhesion in relation to physiological structures was observed for temperatures of 10 °C or 32 °C. At 10 °C, the vegetative form adhered less than sporulated. This may correlate to low values of μ and μmax, and long period of λ. The variation of 22 °C in temperature was sufficient for that adhesion of all vegetative cells genotypes were almost two log cycles higher than at 10 °C, confirming the importance and influence of temperature on adhesion process. The effect of temperature on the adhesion of vegetative cells and spores of B. cereus, can be explained, among other factors, by hydrophobic interactions. These interactions are governed by the entropy of the system, thus increasing temperature favors the entropic component. Thus, when temperature increases the hydrophobic interactions are become stronger, favoring adhesion. According to results, removal of spores and vegetative cells for genotypes of B. cereus is dependent (p <0.05) of the treatment applied, however, the action of these agents was not affected by physiological structure (vegetative and spore), or by genotypes. Formulations containing sodium dodecylbenzene sulfonate combined with sodium dichloroisocyanurate or peracetic acid were more efficient, resulting in hygienization of stainless steel with a count of B. cereus below 50 cfu.cm-2. We observed that all genotypes in the vegetative form were considered hydrophilic (ΔGsws TOT> 0), independent of temperature (10 °C and 32 °C). However, all genotypes in the spore form were hydrophobic (ΔGsws TOT <0). The adhesion to stainless steel was thermodynamically favorable (ΔGadhesion < 0) for all the genotypes at 10 °C and 32 °C for both physiological structures except for the cell vegetative genotype G4 at 10 °C and 32 °C, where the adhesion was thermodynamically unfavorable (ΔGadhesion > 0). |
id |
UFV_47e83cd988b8a23aa89a0e2cafec3372 |
---|---|
oai_identifier_str |
oai:locus.ufv.br:123456789/2930 |
network_acronym_str |
UFV |
network_name_str |
LOCUS Repositório Institucional da UFV |
repository_id_str |
2145 |
spelling |
Sá, João Paulo Natalino dehttp://lattes.cnpq.br/0461884131306937Peña, Wilmer Edgard Luerahttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4730660Z8Araújo, Emiliane Andradehttp://lattes.cnpq.br/0102165680976889Andrade, Nélio José dehttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4788281Y5Pires, Ana Clarissa dos Santoshttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4776833U9Bernardes, Patrícia Camposhttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4711525D72015-03-26T13:13:28Z2013-11-192015-03-26T13:13:28Z2013-03-20SÁ, João Paulo Natalino de. Genotypic influence of Bacillus cereus strains in adhesion and resistance to chemical sanitizing. 2013. 80 f. Dissertação (Mestrado em Ciência de Alimentos; Tecnologia de Alimentos; Engenharia de Alimentos) - Universidade Federal de Viçosa, Viçosa, 2013.http://locus.ufv.br/handle/123456789/2930Among several micro-organisms contaminants in food industry, Bacillus cereus is a pathogen that may cause poisoning emetic and/or diarrheal and, furthermore, spoil foods production of proteolytic or lipolytic enzymes. In this research, the multiplication rate (μ), the lag time (λ) and maximum multiplication rate (μmax) of four genotypes of Bacillus cereus with genes for the production from different enterotoxins were evaluated at temperatures of 10 °C, 15 °C, 25 °C, 32 °C and 42 °C. Multiplying quantitation was performed byspectrophotometer, with readings from optical density at 600 nm. The DMFit software was used to fit the data to curves of Baranyi and Roberts model. The maximum multiplication rate (μmax) was evaluated by modified Ratkowsky et al. model. Also in the experiment, adhesion of genotypes of B. cereus, vegetative cell or spore, to stainless steel 304 # 4, at 10 ° C and 32 ° C was evaluated. The interaction between the surface of stainless steel and genotypes was studied by tension interfacial characteristics and measure of the contact angle of surfaces. In addition, we evaluated the removal of genotypes adhered to the stainless steel surface using six hygienic procedures through simulated use test of cleaning in place (CIP). As result, no significant effect was found (p> 0.05) for values of μ between genotypes, at the same temperature. However, was observed significant effects (p <0.05) among genotypes for this parameter (μ) for different incubation temperatures (10 °C, 15 °C, 25 °C, 32 ° C and 42 °C) and also for the lag time (λ). At 10 ° C, the values of μ and μmax were lower and the lag time (λ) was higher for all vegetative cells of genotypes. At 32 °C there was an opposite behavior for all kinetic parameters. In this study, no difference was observed (p> 0.05) in the ability of adhesion to stainless steel between the genotypes at the same temperature (10 °C and 32 °C). However, significant differences (p <0.05) in adhesion in relation to physiological structures was observed for temperatures of 10 °C or 32 °C. At 10 °C, the vegetative form adhered less than sporulated. This may correlate to low values of μ and μmax, and long period of λ. The variation of 22 °C in temperature was sufficient for that adhesion of all vegetative cells genotypes were almost two log cycles higher than at 10 °C, confirming the importance and influence of temperature on adhesion process. The effect of temperature on the adhesion of vegetative cells and spores of B. cereus, can be explained, among other factors, by hydrophobic interactions. These interactions are governed by the entropy of the system, thus increasing temperature favors the entropic component. Thus, when temperature increases the hydrophobic interactions are become stronger, favoring adhesion. According to results, removal of spores and vegetative cells for genotypes of B. cereus is dependent (p <0.05) of the treatment applied, however, the action of these agents was not affected by physiological structure (vegetative and spore), or by genotypes. Formulations containing sodium dodecylbenzene sulfonate combined with sodium dichloroisocyanurate or peracetic acid were more efficient, resulting in hygienization of stainless steel with a count of B. cereus below 50 cfu.cm-2. We observed that all genotypes in the vegetative form were considered hydrophilic (ΔGsws TOT> 0), independent of temperature (10 °C and 32 °C). However, all genotypes in the spore form were hydrophobic (ΔGsws TOT <0). The adhesion to stainless steel was thermodynamically favorable (ΔGadhesion < 0) for all the genotypes at 10 °C and 32 °C for both physiological structures except for the cell vegetative genotype G4 at 10 °C and 32 °C, where the adhesion was thermodynamically unfavorable (ΔGadhesion > 0).Dentre os diversos micro-organismos contaminantes na indústria de alimentos, encontra-se Bacillus cereus, um patógeno que pode causar intoxicação emética,e ou, diarreica e, ainda, deteriorar alimentos pela produção de enzimas lipolíticas ou proteolíticas.Nessa pesquisa, a taxa de multiplicação (μ), o tempo de lag (λ) de quatro genótipos deste micro-organismo com genes para a produção de diferentes enterotoxinas, foi avaliado ás temperaturas de 10 °C, 15 °C, 25 °C, 32 °C e 42 °C. A quantificação da multiplicação foi realizada utilizando espectrofotômetro, com leitura de densidade ótica a 600nm. O programa DMFit foi usado para ajustar os dados das curvas ao modelo de Baranyi e Roberts. A velocidade especifica da multiplicação máxima (μmax) foi determinada pelo modelo de Ratkowsky e colaboradores modificado. Também no experimento, a adesão dos genótipos de B. cereus na forma vegetativa e esporulada á superfície de aço inoxidável 304 # 4, a 10 ° e 32 °C foi avaliada. Além disso, avaliou-se a remoção dos genótipos aderidos ao aço inoxidável frente a seis procedimentos de higienização através de teste de uso simulado de limpeza CIP. Como resultado, não se constatou efeito significativo (p>0,05) para os valores de μ entre os genótipos à uma mesma temperatura. Porém, houve efeito (p<0,05) entre os genótipos para esse parâmetro cinético (μ), nas diferentes temperaturas de incubação (10 °C, 15 °C, 25 °C, 32 °C e 42 °C ) e, também no tempo de lag (λ). A 10 °C, os valores de μ foram menores e a fase de lag (λ) foi maior para todas as células vegetativas. A 32 °C observouse um comportamento oposto para todos os parâmetros cinéticos. Nesta pesquisa, não se constatou diferença (p>0,05) na capacidade de adesão ao aço inoxidável entre os genótipos à mesma temperatura (10 °C e 32 °C). Porém, houve diferença (p<0,05) na adesão das estruturas fisiológicas (vegetativa e esporulada) em relação às temperaturas de 10 °C e 32 °C. A 10 °C, a forma vegetativa aderiu menos do que a esporulada. Este fato pode correlacionar-se as baixas taxas de μ, e ao longo período de λ. A variação de 22 °C na temperatura foi suficiente para que a adesão das células vegetativas de todos os genótipos fosse quase dois ciclos logarítmicos maior em comparação a 10 °C, confirmando a importância e a influência da temperatura no processo de adesão. A remoção de células vegetativas e esporuladas para os genótipos de B cereus é dependente (p<0,05) do tratamento aplicado, porém, a ação destes agentes não foi afetada pelas estruturas fisiológicas, nem pelos genótipos. As formulações contendo dodecilbenzeno sulfonato de sódio (DBSS) e dicloroisocianurato de sódio, ou DBSS e ácido peracético, foram as mais eficientes, resultando na higienização do aço inoxidável com uma contagem de B. cereus abaixo de 50 UFC/cm2. Observou-se que todos os genótipos na estrutura vegetativa, foram consideradas hidrofílicos (ΔGsws TOT >0) independente da temperatura 10 °C e 32 C). Porém, todos os genótipos esporulados, foram hidrófóbicos (ΔGsws TOT <0). Pode-se predizer que a adesão foi termodinamicamente favorável (ΔGadhesion < 0) ao aço inoxidável, para os genótipos estudados a 10 °C e 32 °C, para ambas as estruturas fisiológicas, exceto para célula vegetative do genótipo G4, a 10 °C e 32 °C, onde a adesão foi termodinâmicamente desfavorável (ΔGadhesion > 0).Este trabalho mostrou que fatores físico-químicos e microbiológicos são complementares no fenômeno de adesão bacteriana.Conselho Nacional de Desenvolvimento Científico e Tecnológicoapplication/pdfporUniversidade Federal de ViçosaMestrado em Ciência e Tecnologia de AlimentosUFVBRCiência de Alimentos; Tecnologia de Alimentos; Engenharia de AlimentosLaticíniosBacillus cereusAdesão bacterianaResistência a sanitizantesDairyBacillus cereusAdhesion bacterialResistance to sanitizingCNPQ::CIENCIAS AGRARIAS::CIENCIA E TECNOLOGIA DE ALIMENTOS::CIENCIA DE ALIMENTOSInfluência genotípica de estirpes de Bacillus cereus na adesão e na resistência a sanitizantes químicosGenotypic influence of Bacillus cereus strains in adhesion and resistance to chemical sanitizinginfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALtexto completo.pdfapplication/pdf1084689https://locus.ufv.br//bitstream/123456789/2930/1/texto%20completo.pdf18a67da9fba516ad97d7da97ef6a5930MD51TEXTtexto completo.pdf.txttexto completo.pdf.txtExtracted texttext/plain132385https://locus.ufv.br//bitstream/123456789/2930/2/texto%20completo.pdf.txtc09e305c5094c2f9a92325aa509b90aaMD52THUMBNAILtexto completo.pdf.jpgtexto completo.pdf.jpgIM Thumbnailimage/jpeg3641https://locus.ufv.br//bitstream/123456789/2930/3/texto%20completo.pdf.jpg3e5f0692a10bb640e9deb6176b66281bMD53123456789/29302016-04-08 23:16:34.23oai:locus.ufv.br:123456789/2930Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452016-04-09T02:16:34LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false |
dc.title.por.fl_str_mv |
Influência genotípica de estirpes de Bacillus cereus na adesão e na resistência a sanitizantes químicos |
dc.title.alternative.eng.fl_str_mv |
Genotypic influence of Bacillus cereus strains in adhesion and resistance to chemical sanitizing |
title |
Influência genotípica de estirpes de Bacillus cereus na adesão e na resistência a sanitizantes químicos |
spellingShingle |
Influência genotípica de estirpes de Bacillus cereus na adesão e na resistência a sanitizantes químicos Sá, João Paulo Natalino de Laticínios Bacillus cereus Adesão bacteriana Resistência a sanitizantes Dairy Bacillus cereus Adhesion bacterial Resistance to sanitizing CNPQ::CIENCIAS AGRARIAS::CIENCIA E TECNOLOGIA DE ALIMENTOS::CIENCIA DE ALIMENTOS |
title_short |
Influência genotípica de estirpes de Bacillus cereus na adesão e na resistência a sanitizantes químicos |
title_full |
Influência genotípica de estirpes de Bacillus cereus na adesão e na resistência a sanitizantes químicos |
title_fullStr |
Influência genotípica de estirpes de Bacillus cereus na adesão e na resistência a sanitizantes químicos |
title_full_unstemmed |
Influência genotípica de estirpes de Bacillus cereus na adesão e na resistência a sanitizantes químicos |
title_sort |
Influência genotípica de estirpes de Bacillus cereus na adesão e na resistência a sanitizantes químicos |
author |
Sá, João Paulo Natalino de |
author_facet |
Sá, João Paulo Natalino de |
author_role |
author |
dc.contributor.authorLattes.por.fl_str_mv |
http://lattes.cnpq.br/0461884131306937 |
dc.contributor.author.fl_str_mv |
Sá, João Paulo Natalino de |
dc.contributor.advisor-co1.fl_str_mv |
Peña, Wilmer Edgard Luera |
dc.contributor.advisor-co1Lattes.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4730660Z8 |
dc.contributor.advisor-co2.fl_str_mv |
Araújo, Emiliane Andrade |
dc.contributor.advisor-co2Lattes.fl_str_mv |
http://lattes.cnpq.br/0102165680976889 |
dc.contributor.advisor1.fl_str_mv |
Andrade, Nélio José de |
dc.contributor.advisor1Lattes.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4788281Y5 |
dc.contributor.referee1.fl_str_mv |
Pires, Ana Clarissa dos Santos |
dc.contributor.referee1Lattes.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4776833U9 |
dc.contributor.referee2.fl_str_mv |
Bernardes, Patrícia Campos |
dc.contributor.referee2Lattes.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4711525D7 |
contributor_str_mv |
Peña, Wilmer Edgard Luera Araújo, Emiliane Andrade Andrade, Nélio José de Pires, Ana Clarissa dos Santos Bernardes, Patrícia Campos |
dc.subject.por.fl_str_mv |
Laticínios Bacillus cereus Adesão bacteriana Resistência a sanitizantes |
topic |
Laticínios Bacillus cereus Adesão bacteriana Resistência a sanitizantes Dairy Bacillus cereus Adhesion bacterial Resistance to sanitizing CNPQ::CIENCIAS AGRARIAS::CIENCIA E TECNOLOGIA DE ALIMENTOS::CIENCIA DE ALIMENTOS |
dc.subject.eng.fl_str_mv |
Dairy Bacillus cereus Adhesion bacterial Resistance to sanitizing |
dc.subject.cnpq.fl_str_mv |
CNPQ::CIENCIAS AGRARIAS::CIENCIA E TECNOLOGIA DE ALIMENTOS::CIENCIA DE ALIMENTOS |
description |
Among several micro-organisms contaminants in food industry, Bacillus cereus is a pathogen that may cause poisoning emetic and/or diarrheal and, furthermore, spoil foods production of proteolytic or lipolytic enzymes. In this research, the multiplication rate (μ), the lag time (λ) and maximum multiplication rate (μmax) of four genotypes of Bacillus cereus with genes for the production from different enterotoxins were evaluated at temperatures of 10 °C, 15 °C, 25 °C, 32 °C and 42 °C. Multiplying quantitation was performed byspectrophotometer, with readings from optical density at 600 nm. The DMFit software was used to fit the data to curves of Baranyi and Roberts model. The maximum multiplication rate (μmax) was evaluated by modified Ratkowsky et al. model. Also in the experiment, adhesion of genotypes of B. cereus, vegetative cell or spore, to stainless steel 304 # 4, at 10 ° C and 32 ° C was evaluated. The interaction between the surface of stainless steel and genotypes was studied by tension interfacial characteristics and measure of the contact angle of surfaces. In addition, we evaluated the removal of genotypes adhered to the stainless steel surface using six hygienic procedures through simulated use test of cleaning in place (CIP). As result, no significant effect was found (p> 0.05) for values of μ between genotypes, at the same temperature. However, was observed significant effects (p <0.05) among genotypes for this parameter (μ) for different incubation temperatures (10 °C, 15 °C, 25 °C, 32 ° C and 42 °C) and also for the lag time (λ). At 10 ° C, the values of μ and μmax were lower and the lag time (λ) was higher for all vegetative cells of genotypes. At 32 °C there was an opposite behavior for all kinetic parameters. In this study, no difference was observed (p> 0.05) in the ability of adhesion to stainless steel between the genotypes at the same temperature (10 °C and 32 °C). However, significant differences (p <0.05) in adhesion in relation to physiological structures was observed for temperatures of 10 °C or 32 °C. At 10 °C, the vegetative form adhered less than sporulated. This may correlate to low values of μ and μmax, and long period of λ. The variation of 22 °C in temperature was sufficient for that adhesion of all vegetative cells genotypes were almost two log cycles higher than at 10 °C, confirming the importance and influence of temperature on adhesion process. The effect of temperature on the adhesion of vegetative cells and spores of B. cereus, can be explained, among other factors, by hydrophobic interactions. These interactions are governed by the entropy of the system, thus increasing temperature favors the entropic component. Thus, when temperature increases the hydrophobic interactions are become stronger, favoring adhesion. According to results, removal of spores and vegetative cells for genotypes of B. cereus is dependent (p <0.05) of the treatment applied, however, the action of these agents was not affected by physiological structure (vegetative and spore), or by genotypes. Formulations containing sodium dodecylbenzene sulfonate combined with sodium dichloroisocyanurate or peracetic acid were more efficient, resulting in hygienization of stainless steel with a count of B. cereus below 50 cfu.cm-2. We observed that all genotypes in the vegetative form were considered hydrophilic (ΔGsws TOT> 0), independent of temperature (10 °C and 32 °C). However, all genotypes in the spore form were hydrophobic (ΔGsws TOT <0). The adhesion to stainless steel was thermodynamically favorable (ΔGadhesion < 0) for all the genotypes at 10 °C and 32 °C for both physiological structures except for the cell vegetative genotype G4 at 10 °C and 32 °C, where the adhesion was thermodynamically unfavorable (ΔGadhesion > 0). |
publishDate |
2013 |
dc.date.available.fl_str_mv |
2013-11-19 2015-03-26T13:13:28Z |
dc.date.issued.fl_str_mv |
2013-03-20 |
dc.date.accessioned.fl_str_mv |
2015-03-26T13:13:28Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
SÁ, João Paulo Natalino de. Genotypic influence of Bacillus cereus strains in adhesion and resistance to chemical sanitizing. 2013. 80 f. Dissertação (Mestrado em Ciência de Alimentos; Tecnologia de Alimentos; Engenharia de Alimentos) - Universidade Federal de Viçosa, Viçosa, 2013. |
dc.identifier.uri.fl_str_mv |
http://locus.ufv.br/handle/123456789/2930 |
identifier_str_mv |
SÁ, João Paulo Natalino de. Genotypic influence of Bacillus cereus strains in adhesion and resistance to chemical sanitizing. 2013. 80 f. Dissertação (Mestrado em Ciência de Alimentos; Tecnologia de Alimentos; Engenharia de Alimentos) - Universidade Federal de Viçosa, Viçosa, 2013. |
url |
http://locus.ufv.br/handle/123456789/2930 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Viçosa |
dc.publisher.program.fl_str_mv |
Mestrado em Ciência e Tecnologia de Alimentos |
dc.publisher.initials.fl_str_mv |
UFV |
dc.publisher.country.fl_str_mv |
BR |
dc.publisher.department.fl_str_mv |
Ciência de Alimentos; Tecnologia de Alimentos; Engenharia de Alimentos |
publisher.none.fl_str_mv |
Universidade Federal de Viçosa |
dc.source.none.fl_str_mv |
reponame:LOCUS Repositório Institucional da UFV instname:Universidade Federal de Viçosa (UFV) instacron:UFV |
instname_str |
Universidade Federal de Viçosa (UFV) |
instacron_str |
UFV |
institution |
UFV |
reponame_str |
LOCUS Repositório Institucional da UFV |
collection |
LOCUS Repositório Institucional da UFV |
bitstream.url.fl_str_mv |
https://locus.ufv.br//bitstream/123456789/2930/1/texto%20completo.pdf https://locus.ufv.br//bitstream/123456789/2930/2/texto%20completo.pdf.txt https://locus.ufv.br//bitstream/123456789/2930/3/texto%20completo.pdf.jpg |
bitstream.checksum.fl_str_mv |
18a67da9fba516ad97d7da97ef6a5930 c09e305c5094c2f9a92325aa509b90aa 3e5f0692a10bb640e9deb6176b66281b |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV) |
repository.mail.fl_str_mv |
fabiojreis@ufv.br |
_version_ |
1801212863717572608 |