Relationship between coffee leaf analysis and soil chemical analysis
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | LOCUS Repositório Institucional da UFV |
Texto Completo: | http://dx.doi.org/10.1590/18069657rbcs20170109 http://www.locus.ufv.br/handle/123456789/20430 |
Resumo: | Research focused on adequate nutrition of plants is essential in modern coffee production to increase yield and develop more efficient management strategies with greater environmental and economic sustainability. The objectives of this study were to establish critical and optimal levels of soil fertility properties for high yielding Arabica coffee crops using the Boundary Line method and, then, relate the macronutrient contents in the diagnostic leaf of coffee to the macronutrients available in the soil using the Quadrant Diagram of the Plant-Soil Relationship (QDpsR). The study made use of a soil chemical analysis database, leaf macronutrient contents, and Arabica coffee yield from five representative coffee-growing regions in Minas Gerais. An analysis of data consistency was performed, and relative fruit yield (RFY) was related to the soil organic matter (SOM), P, K, Ca, and Mg contents in the soil, establishing the boundary line (BL) in each graph. Equations were adjusted from the BL points, and the equation that best fit was selected. Using the QDpsR method, the response plane was divided into four quadrants, where the total leaf contents of N, P, K, Ca, Mg, and S were plotted as a function of the contents of SOM, P, K, Ca, and Mg in the soil, on the y and x axes of the Cartesian coordinate system. The regression equations were adjusted to the pairs of points (y, x) of quadrants III and I and were used to estimate the macronutrient sufficiency ranges from the critical and optimal levels in the soil. The BL method was used to determine the class of good soil fertility for SOM, P, K, Ca, and Mg. The QDpsR method allows determination of response curves for leaf content as a variable of soil contents, making it possible to estimate the sufficiency ranges in the diagnostic leaf of coffee: 33.4-35.8 g kg-1 of N, 1.4-1.6 g kg-1 of P, 24.4-27.0 g kg-1 of K, 11.9-13.6 g kg-1 of Ca, 3.8-4.5 g kg-1 of Mg, and 1.4-1.8 g kg-1 of S; which were consistent with the sufficiency ranges considered suitable for the crop. This study demonstrated the importance of leaf analysis as a tool for evaluation of the nutritional status of Arabica coffee since the technique is consistent with the theoretical principles underlying it. |
id |
UFV_560f43d900870bdee7109af0554f4f5b |
---|---|
oai_identifier_str |
oai:locus.ufv.br:123456789/20430 |
network_acronym_str |
UFV |
network_name_str |
LOCUS Repositório Institucional da UFV |
repository_id_str |
2145 |
spelling |
Sousa, Jailson SilvaNeves, Júlio César LimaMartinez, Herminia Emilia PrietoAlvarez, Víctor Hugo V.2018-07-04T14:28:19Z2018-07-04T14:28:19Z2018-06-071806-9657http://dx.doi.org/10.1590/18069657rbcs20170109http://www.locus.ufv.br/handle/123456789/20430Research focused on adequate nutrition of plants is essential in modern coffee production to increase yield and develop more efficient management strategies with greater environmental and economic sustainability. The objectives of this study were to establish critical and optimal levels of soil fertility properties for high yielding Arabica coffee crops using the Boundary Line method and, then, relate the macronutrient contents in the diagnostic leaf of coffee to the macronutrients available in the soil using the Quadrant Diagram of the Plant-Soil Relationship (QDpsR). The study made use of a soil chemical analysis database, leaf macronutrient contents, and Arabica coffee yield from five representative coffee-growing regions in Minas Gerais. An analysis of data consistency was performed, and relative fruit yield (RFY) was related to the soil organic matter (SOM), P, K, Ca, and Mg contents in the soil, establishing the boundary line (BL) in each graph. Equations were adjusted from the BL points, and the equation that best fit was selected. Using the QDpsR method, the response plane was divided into four quadrants, where the total leaf contents of N, P, K, Ca, Mg, and S were plotted as a function of the contents of SOM, P, K, Ca, and Mg in the soil, on the y and x axes of the Cartesian coordinate system. The regression equations were adjusted to the pairs of points (y, x) of quadrants III and I and were used to estimate the macronutrient sufficiency ranges from the critical and optimal levels in the soil. The BL method was used to determine the class of good soil fertility for SOM, P, K, Ca, and Mg. The QDpsR method allows determination of response curves for leaf content as a variable of soil contents, making it possible to estimate the sufficiency ranges in the diagnostic leaf of coffee: 33.4-35.8 g kg-1 of N, 1.4-1.6 g kg-1 of P, 24.4-27.0 g kg-1 of K, 11.9-13.6 g kg-1 of Ca, 3.8-4.5 g kg-1 of Mg, and 1.4-1.8 g kg-1 of S; which were consistent with the sufficiency ranges considered suitable for the crop. This study demonstrated the importance of leaf analysis as a tool for evaluation of the nutritional status of Arabica coffee since the technique is consistent with the theoretical principles underlying it.engRevista Brasileira de Ciência do SoloVolume 42, Article e0170109, Pages 1-13, june 2018Coffea arabica L.Leaf nutrient contentSoil nutrient contentNutritional managementRelationship between coffee leaf analysis and soil chemical analysisinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfinfo:eu-repo/semantics/openAccessreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALartigo.pdfartigo.pdftexto completoapplication/pdf1140705https://locus.ufv.br//bitstream/123456789/20430/1/artigo.pdf7e9fb5c04b60a16a8d919333293df178MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://locus.ufv.br//bitstream/123456789/20430/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILartigo.pdf.jpgartigo.pdf.jpgIM Thumbnailimage/jpeg5815https://locus.ufv.br//bitstream/123456789/20430/3/artigo.pdf.jpg6eb805c907711a178a6797ca6fa76a20MD53123456789/204302018-07-04 23:00:58.664oai:locus.ufv.br:123456789/20430Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452018-07-05T02:00:58LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false |
dc.title.en.fl_str_mv |
Relationship between coffee leaf analysis and soil chemical analysis |
title |
Relationship between coffee leaf analysis and soil chemical analysis |
spellingShingle |
Relationship between coffee leaf analysis and soil chemical analysis Sousa, Jailson Silva Coffea arabica L. Leaf nutrient content Soil nutrient content Nutritional management |
title_short |
Relationship between coffee leaf analysis and soil chemical analysis |
title_full |
Relationship between coffee leaf analysis and soil chemical analysis |
title_fullStr |
Relationship between coffee leaf analysis and soil chemical analysis |
title_full_unstemmed |
Relationship between coffee leaf analysis and soil chemical analysis |
title_sort |
Relationship between coffee leaf analysis and soil chemical analysis |
author |
Sousa, Jailson Silva |
author_facet |
Sousa, Jailson Silva Neves, Júlio César Lima Martinez, Herminia Emilia Prieto Alvarez, Víctor Hugo V. |
author_role |
author |
author2 |
Neves, Júlio César Lima Martinez, Herminia Emilia Prieto Alvarez, Víctor Hugo V. |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Sousa, Jailson Silva Neves, Júlio César Lima Martinez, Herminia Emilia Prieto Alvarez, Víctor Hugo V. |
dc.subject.pt-BR.fl_str_mv |
Coffea arabica L. Leaf nutrient content Soil nutrient content Nutritional management |
topic |
Coffea arabica L. Leaf nutrient content Soil nutrient content Nutritional management |
description |
Research focused on adequate nutrition of plants is essential in modern coffee production to increase yield and develop more efficient management strategies with greater environmental and economic sustainability. The objectives of this study were to establish critical and optimal levels of soil fertility properties for high yielding Arabica coffee crops using the Boundary Line method and, then, relate the macronutrient contents in the diagnostic leaf of coffee to the macronutrients available in the soil using the Quadrant Diagram of the Plant-Soil Relationship (QDpsR). The study made use of a soil chemical analysis database, leaf macronutrient contents, and Arabica coffee yield from five representative coffee-growing regions in Minas Gerais. An analysis of data consistency was performed, and relative fruit yield (RFY) was related to the soil organic matter (SOM), P, K, Ca, and Mg contents in the soil, establishing the boundary line (BL) in each graph. Equations were adjusted from the BL points, and the equation that best fit was selected. Using the QDpsR method, the response plane was divided into four quadrants, where the total leaf contents of N, P, K, Ca, Mg, and S were plotted as a function of the contents of SOM, P, K, Ca, and Mg in the soil, on the y and x axes of the Cartesian coordinate system. The regression equations were adjusted to the pairs of points (y, x) of quadrants III and I and were used to estimate the macronutrient sufficiency ranges from the critical and optimal levels in the soil. The BL method was used to determine the class of good soil fertility for SOM, P, K, Ca, and Mg. The QDpsR method allows determination of response curves for leaf content as a variable of soil contents, making it possible to estimate the sufficiency ranges in the diagnostic leaf of coffee: 33.4-35.8 g kg-1 of N, 1.4-1.6 g kg-1 of P, 24.4-27.0 g kg-1 of K, 11.9-13.6 g kg-1 of Ca, 3.8-4.5 g kg-1 of Mg, and 1.4-1.8 g kg-1 of S; which were consistent with the sufficiency ranges considered suitable for the crop. This study demonstrated the importance of leaf analysis as a tool for evaluation of the nutritional status of Arabica coffee since the technique is consistent with the theoretical principles underlying it. |
publishDate |
2018 |
dc.date.accessioned.fl_str_mv |
2018-07-04T14:28:19Z |
dc.date.available.fl_str_mv |
2018-07-04T14:28:19Z |
dc.date.issued.fl_str_mv |
2018-06-07 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1590/18069657rbcs20170109 http://www.locus.ufv.br/handle/123456789/20430 |
dc.identifier.issn.none.fl_str_mv |
1806-9657 |
identifier_str_mv |
1806-9657 |
url |
http://dx.doi.org/10.1590/18069657rbcs20170109 http://www.locus.ufv.br/handle/123456789/20430 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofseries.pt-BR.fl_str_mv |
Volume 42, Article e0170109, Pages 1-13, june 2018 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Revista Brasileira de Ciência do Solo |
publisher.none.fl_str_mv |
Revista Brasileira de Ciência do Solo |
dc.source.none.fl_str_mv |
reponame:LOCUS Repositório Institucional da UFV instname:Universidade Federal de Viçosa (UFV) instacron:UFV |
instname_str |
Universidade Federal de Viçosa (UFV) |
instacron_str |
UFV |
institution |
UFV |
reponame_str |
LOCUS Repositório Institucional da UFV |
collection |
LOCUS Repositório Institucional da UFV |
bitstream.url.fl_str_mv |
https://locus.ufv.br//bitstream/123456789/20430/1/artigo.pdf https://locus.ufv.br//bitstream/123456789/20430/2/license.txt https://locus.ufv.br//bitstream/123456789/20430/3/artigo.pdf.jpg |
bitstream.checksum.fl_str_mv |
7e9fb5c04b60a16a8d919333293df178 8a4605be74aa9ea9d79846c1fba20a33 6eb805c907711a178a6797ca6fa76a20 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV) |
repository.mail.fl_str_mv |
fabiojreis@ufv.br |
_version_ |
1801213058781020160 |