Optimizing a sweet corn breeding program: implementing genomic selection and doubled haploid technology

Detalhes bibliográficos
Autor(a) principal: Coelho, Igor Ferreira
Data de Publicação: 2022
Tipo de documento: Tese
Idioma: eng
Título da fonte: LOCUS Repositório Institucional da UFV
Texto Completo: https://locus.ufv.br//handle/123456789/30135
https://doi.org/10.47328/ufvbbt.2022.374
Resumo: Several tools have been adopted to optimize the breeding programs performance, in terms of breeding cycle length and number of field plots. In this way, tools as genomic selection (GS) and doubled haploid technologies (DH) have been adopted because they shorten the breeding cycle, by predicting the best materials without needing for trying in field (GS) or by the generation of lines faster (DH); diminish the number of field plots, by bringing just the most potential materials (GS) or skipping successive cycles of autopollination (DH); and others. Moreover, many models and packages were developed to simulate breeding programs following the advancement of computational efficiency. With reliability of biological process and robust statistical principles. This fact enables the researchers to investigate the breeding methods and strategies, avoiding the need to implement everything in field, which would take long time and have high cost, to choose the most potential strategy(ies) to be adopted in the program. This work adopted the AlphaSimR package with the goal of optimize a sweet corn breeding program, by including the GS and DH tools, through the evaluation of the genetic parameters and general costs. It was observed that the adoption of these technologies inflates the budget of the program and increase the number of field plots. However, these strategies bring higher genetic gains of the programs and reduce the breeding cycle length. As conclusion, the financial/genetic recompense of adopting these technologies is given by the generation of lines/hybrids faster, which is an intangible gain, but it is very important in a long-term commercial breeding program. Keywords: Plant Breeding. Quantitative Genetics. Biometric Analyses. Genotype-by- Environment Interaction. Cost Efficiency.
id UFV_58c8641217d69eb2ca83b564ab4155a3
oai_identifier_str oai:locus.ufv.br:123456789/30135
network_acronym_str UFV
network_name_str LOCUS Repositório Institucional da UFV
repository_id_str 2145
spelling Optimizing a sweet corn breeding program: implementing genomic selection and doubled haploid technologyOtimização de um programa de melhoramento genético de milho doce: implementando seleção genômica e técnica de duplo-haploideMilho-doce - Melhoramento genéticoGenética quantitativaBiometriaInteração genótipo-ambienteCusto-benefícioGenética QuantitativaSeveral tools have been adopted to optimize the breeding programs performance, in terms of breeding cycle length and number of field plots. In this way, tools as genomic selection (GS) and doubled haploid technologies (DH) have been adopted because they shorten the breeding cycle, by predicting the best materials without needing for trying in field (GS) or by the generation of lines faster (DH); diminish the number of field plots, by bringing just the most potential materials (GS) or skipping successive cycles of autopollination (DH); and others. Moreover, many models and packages were developed to simulate breeding programs following the advancement of computational efficiency. With reliability of biological process and robust statistical principles. This fact enables the researchers to investigate the breeding methods and strategies, avoiding the need to implement everything in field, which would take long time and have high cost, to choose the most potential strategy(ies) to be adopted in the program. This work adopted the AlphaSimR package with the goal of optimize a sweet corn breeding program, by including the GS and DH tools, through the evaluation of the genetic parameters and general costs. It was observed that the adoption of these technologies inflates the budget of the program and increase the number of field plots. However, these strategies bring higher genetic gains of the programs and reduce the breeding cycle length. As conclusion, the financial/genetic recompense of adopting these technologies is given by the generation of lines/hybrids faster, which is an intangible gain, but it is very important in a long-term commercial breeding program. Keywords: Plant Breeding. Quantitative Genetics. Biometric Analyses. Genotype-by- Environment Interaction. Cost Efficiency.Diversas ferramentas têm sido adotadas para otimização de programas de melhoramento, em termos de tempo de ciclo e quantidade de experimentos de campo. Nesse sentido, análises como seleção genômica (GS) e utilização de tecnologia duplo haplóide (DH) tem sido adotada em programas pelo fato de encurtarem o tempo do ciclo, seja por predição (GS) ou pela geração de linhagens mais rapidamente (DH); diminuir o número de plots em campo, predizendo os materiais potencias para serem testados (GS) ou evitando os sucessivos ciclos de auto-fecundação (DH); dentre outros. Além disso, com o avanço da eficiência computacional, diversos modelos e pacotes foram desenvolvidos no intuito de simularem programas de melhoramento. Esses modelos permitem a investigação de métodos visando a escolha dos estágios adequados para introdução de tecnologias, a fim de selecionar as melhores estratégias e não necessitar ter que implementar no programa para realmente ver sua potencialidade, perdendo tempo e dinheiro em plots teste. O trabalho desenvolvido utilizou o pacote AlphaSimR com o intuito de otimizar um programa de melhoramento de milho doce, com a adoção de GS e DH, por meio da avaliação de parâmetros genéticos, e custos gerais. Notou-se que as adoções das tecnologias supracitadas inflam o orçamento do programa convencional atualmente adotado e aumentam o número de parcelas em campo. No entanto, essas estratégias trazem ganhos genéticos e ainda reduzem o tempo de ciclo de melhoramento. Conclui-se que o retorno financeiro/genético da adoção de novas tecnologias ao programa conseguirá aumentar o número de materiais lançados e consequentemente a participação no mercado de milho doce do programa, o que são ganhos intangíveis que são peça chave em um programa de melhoramento comercial com uma visão de longo prazo. Palavras-chave: Melhoramento de Plantas. Genética Quantitaiva. Analyses Biométricas. Interação Genótipo por Ambientes. Eficiência De Custos.Conselho Nacional de Desenvolvimento Científico e TecnológicoUniversidade Federal de ViçosaGenética e MelhoramentoBhering, Leonardo Lopeshttp://lattes.cnpq.br/9436999633800764Coelho, Igor Ferreira2022-10-24T17:44:11Z2022-10-24T17:44:11Z2022-04-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfCOELHO, Igor Ferreira. Optimizing a sweet corn breeding program: implementing genomic selection and doubled haploid technology. 2022. 129 f. Tese (Doutorado em Genética e Melhoramento) - Universidade Federal de Viçosa, Viçosa. 2022.https://locus.ufv.br//handle/123456789/30135https://doi.org/10.47328/ufvbbt.2022.374enginfo:eu-repo/semantics/openAccessreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFV2024-07-12T08:33:37Zoai:locus.ufv.br:123456789/30135Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452024-07-12T08:33:37LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false
dc.title.none.fl_str_mv Optimizing a sweet corn breeding program: implementing genomic selection and doubled haploid technology
Otimização de um programa de melhoramento genético de milho doce: implementando seleção genômica e técnica de duplo-haploide
title Optimizing a sweet corn breeding program: implementing genomic selection and doubled haploid technology
spellingShingle Optimizing a sweet corn breeding program: implementing genomic selection and doubled haploid technology
Coelho, Igor Ferreira
Milho-doce - Melhoramento genético
Genética quantitativa
Biometria
Interação genótipo-ambiente
Custo-benefício
Genética Quantitativa
title_short Optimizing a sweet corn breeding program: implementing genomic selection and doubled haploid technology
title_full Optimizing a sweet corn breeding program: implementing genomic selection and doubled haploid technology
title_fullStr Optimizing a sweet corn breeding program: implementing genomic selection and doubled haploid technology
title_full_unstemmed Optimizing a sweet corn breeding program: implementing genomic selection and doubled haploid technology
title_sort Optimizing a sweet corn breeding program: implementing genomic selection and doubled haploid technology
author Coelho, Igor Ferreira
author_facet Coelho, Igor Ferreira
author_role author
dc.contributor.none.fl_str_mv Bhering, Leonardo Lopes
http://lattes.cnpq.br/9436999633800764
dc.contributor.author.fl_str_mv Coelho, Igor Ferreira
dc.subject.por.fl_str_mv Milho-doce - Melhoramento genético
Genética quantitativa
Biometria
Interação genótipo-ambiente
Custo-benefício
Genética Quantitativa
topic Milho-doce - Melhoramento genético
Genética quantitativa
Biometria
Interação genótipo-ambiente
Custo-benefício
Genética Quantitativa
description Several tools have been adopted to optimize the breeding programs performance, in terms of breeding cycle length and number of field plots. In this way, tools as genomic selection (GS) and doubled haploid technologies (DH) have been adopted because they shorten the breeding cycle, by predicting the best materials without needing for trying in field (GS) or by the generation of lines faster (DH); diminish the number of field plots, by bringing just the most potential materials (GS) or skipping successive cycles of autopollination (DH); and others. Moreover, many models and packages were developed to simulate breeding programs following the advancement of computational efficiency. With reliability of biological process and robust statistical principles. This fact enables the researchers to investigate the breeding methods and strategies, avoiding the need to implement everything in field, which would take long time and have high cost, to choose the most potential strategy(ies) to be adopted in the program. This work adopted the AlphaSimR package with the goal of optimize a sweet corn breeding program, by including the GS and DH tools, through the evaluation of the genetic parameters and general costs. It was observed that the adoption of these technologies inflates the budget of the program and increase the number of field plots. However, these strategies bring higher genetic gains of the programs and reduce the breeding cycle length. As conclusion, the financial/genetic recompense of adopting these technologies is given by the generation of lines/hybrids faster, which is an intangible gain, but it is very important in a long-term commercial breeding program. Keywords: Plant Breeding. Quantitative Genetics. Biometric Analyses. Genotype-by- Environment Interaction. Cost Efficiency.
publishDate 2022
dc.date.none.fl_str_mv 2022-10-24T17:44:11Z
2022-10-24T17:44:11Z
2022-04-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv COELHO, Igor Ferreira. Optimizing a sweet corn breeding program: implementing genomic selection and doubled haploid technology. 2022. 129 f. Tese (Doutorado em Genética e Melhoramento) - Universidade Federal de Viçosa, Viçosa. 2022.
https://locus.ufv.br//handle/123456789/30135
https://doi.org/10.47328/ufvbbt.2022.374
identifier_str_mv COELHO, Igor Ferreira. Optimizing a sweet corn breeding program: implementing genomic selection and doubled haploid technology. 2022. 129 f. Tese (Doutorado em Genética e Melhoramento) - Universidade Federal de Viçosa, Viçosa. 2022.
url https://locus.ufv.br//handle/123456789/30135
https://doi.org/10.47328/ufvbbt.2022.374
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Viçosa
Genética e Melhoramento
publisher.none.fl_str_mv Universidade Federal de Viçosa
Genética e Melhoramento
dc.source.none.fl_str_mv reponame:LOCUS Repositório Institucional da UFV
instname:Universidade Federal de Viçosa (UFV)
instacron:UFV
instname_str Universidade Federal de Viçosa (UFV)
instacron_str UFV
institution UFV
reponame_str LOCUS Repositório Institucional da UFV
collection LOCUS Repositório Institucional da UFV
repository.name.fl_str_mv LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)
repository.mail.fl_str_mv fabiojreis@ufv.br
_version_ 1822610729023307776