Limitations to photosynthesis in coffee leaves from different canopy positions
Autor(a) principal: | |
---|---|
Data de Publicação: | 2008 |
Outros Autores: | , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | LOCUS Repositório Institucional da UFV |
Texto Completo: | https://doi.org/10.1016/j.plaphy.2008.05.005 http://www.locus.ufv.br/handle/123456789/19093 |
Resumo: | Limitations to photosynthesis were explored in leaves from four canopy positions of field-grown, unshaded coffee (Coffea arabica L.), a tropical tree species classified as shade-obligatory. Overall, compared to shade (lower) leaves, sun (upper) leaves had higher net carbon assimilation rate (A) (4.5 against 2.0 μmol m−2 s−1 at most) associated with higher electron transport rate (due to a greater irradiance availability) but unrelated to stomatal and mesophyll conductances, which were similar regardless of leaf position. Neither physiological variable directly involved with photosynthetic carbon gain nor those involved with light capture were able to adjust themselves to match the capacity of the photosynthetic machinery to the light supply. We concluded that: (i) there was no major difference in photosynthetic capacity between sun and shade leaves; (ii) the intrinsic low A in coffee was greatly associated with remarkable low diffusive limitations rather than with biochemical or photochemical constraints; and (iii) morphological (e.g., variations in specific leaf area and leaf inclination) or anatomical plasticity should be of greater acclimative value than physiological plasticity as a mean of coffee leaves to respond to changing irradiance. |
id |
UFV_59f73510fa3d521d076576c9ace6a90e |
---|---|
oai_identifier_str |
oai:locus.ufv.br:123456789/19093 |
network_acronym_str |
UFV |
network_name_str |
LOCUS Repositório Institucional da UFV |
repository_id_str |
2145 |
spelling |
Araujo, Wagner L.Dias, Paulo C.Moraes, Gustavo A.B.K.Celin, Elaine F.Cunha, Roberto L.Barros, Raimundo S.DaMatta, Fábio M.2018-04-24T17:18:04Z2018-04-24T17:18:04Z2008-05-2409819428https://doi.org/10.1016/j.plaphy.2008.05.005http://www.locus.ufv.br/handle/123456789/19093Limitations to photosynthesis were explored in leaves from four canopy positions of field-grown, unshaded coffee (Coffea arabica L.), a tropical tree species classified as shade-obligatory. Overall, compared to shade (lower) leaves, sun (upper) leaves had higher net carbon assimilation rate (A) (4.5 against 2.0 μmol m−2 s−1 at most) associated with higher electron transport rate (due to a greater irradiance availability) but unrelated to stomatal and mesophyll conductances, which were similar regardless of leaf position. Neither physiological variable directly involved with photosynthetic carbon gain nor those involved with light capture were able to adjust themselves to match the capacity of the photosynthetic machinery to the light supply. We concluded that: (i) there was no major difference in photosynthetic capacity between sun and shade leaves; (ii) the intrinsic low A in coffee was greatly associated with remarkable low diffusive limitations rather than with biochemical or photochemical constraints; and (iii) morphological (e.g., variations in specific leaf area and leaf inclination) or anatomical plasticity should be of greater acclimative value than physiological plasticity as a mean of coffee leaves to respond to changing irradiance.engPlant Physiology and Biochemistryv. 46, Issue 10, p. 884-890, October 2008Elsevier Masson SAS.info:eu-repo/semantics/openAccessCoffeaGas exchangeIrradianceLeaf conductancePhenotypic plasticityLimitations to photosynthesis in coffee leaves from different canopy positionsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALartigo.pdfartigo.pdfTexto completoapplication/pdf251296https://locus.ufv.br//bitstream/123456789/19093/1/artigo.pdf8bd4edea138e58a89fefe4117b686fc6MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://locus.ufv.br//bitstream/123456789/19093/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILartigo.pdf.jpgartigo.pdf.jpgIM Thumbnailimage/jpeg5166https://locus.ufv.br//bitstream/123456789/19093/3/artigo.pdf.jpgd2da44087fe12221f66b10aa19e3b7a9MD53123456789/190932018-04-24 23:00:40.829oai:locus.ufv.br:123456789/19093Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452018-04-25T02:00:40LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false |
dc.title.en.fl_str_mv |
Limitations to photosynthesis in coffee leaves from different canopy positions |
title |
Limitations to photosynthesis in coffee leaves from different canopy positions |
spellingShingle |
Limitations to photosynthesis in coffee leaves from different canopy positions Araujo, Wagner L. Coffea Gas exchange Irradiance Leaf conductance Phenotypic plasticity |
title_short |
Limitations to photosynthesis in coffee leaves from different canopy positions |
title_full |
Limitations to photosynthesis in coffee leaves from different canopy positions |
title_fullStr |
Limitations to photosynthesis in coffee leaves from different canopy positions |
title_full_unstemmed |
Limitations to photosynthesis in coffee leaves from different canopy positions |
title_sort |
Limitations to photosynthesis in coffee leaves from different canopy positions |
author |
Araujo, Wagner L. |
author_facet |
Araujo, Wagner L. Dias, Paulo C. Moraes, Gustavo A.B.K. Celin, Elaine F. Cunha, Roberto L. Barros, Raimundo S. DaMatta, Fábio M. |
author_role |
author |
author2 |
Dias, Paulo C. Moraes, Gustavo A.B.K. Celin, Elaine F. Cunha, Roberto L. Barros, Raimundo S. DaMatta, Fábio M. |
author2_role |
author author author author author author |
dc.contributor.author.fl_str_mv |
Araujo, Wagner L. Dias, Paulo C. Moraes, Gustavo A.B.K. Celin, Elaine F. Cunha, Roberto L. Barros, Raimundo S. DaMatta, Fábio M. |
dc.subject.pt-BR.fl_str_mv |
Coffea Gas exchange Irradiance Leaf conductance Phenotypic plasticity |
topic |
Coffea Gas exchange Irradiance Leaf conductance Phenotypic plasticity |
description |
Limitations to photosynthesis were explored in leaves from four canopy positions of field-grown, unshaded coffee (Coffea arabica L.), a tropical tree species classified as shade-obligatory. Overall, compared to shade (lower) leaves, sun (upper) leaves had higher net carbon assimilation rate (A) (4.5 against 2.0 μmol m−2 s−1 at most) associated with higher electron transport rate (due to a greater irradiance availability) but unrelated to stomatal and mesophyll conductances, which were similar regardless of leaf position. Neither physiological variable directly involved with photosynthetic carbon gain nor those involved with light capture were able to adjust themselves to match the capacity of the photosynthetic machinery to the light supply. We concluded that: (i) there was no major difference in photosynthetic capacity between sun and shade leaves; (ii) the intrinsic low A in coffee was greatly associated with remarkable low diffusive limitations rather than with biochemical or photochemical constraints; and (iii) morphological (e.g., variations in specific leaf area and leaf inclination) or anatomical plasticity should be of greater acclimative value than physiological plasticity as a mean of coffee leaves to respond to changing irradiance. |
publishDate |
2008 |
dc.date.issued.fl_str_mv |
2008-05-24 |
dc.date.accessioned.fl_str_mv |
2018-04-24T17:18:04Z |
dc.date.available.fl_str_mv |
2018-04-24T17:18:04Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://doi.org/10.1016/j.plaphy.2008.05.005 http://www.locus.ufv.br/handle/123456789/19093 |
dc.identifier.issn.none.fl_str_mv |
09819428 |
identifier_str_mv |
09819428 |
url |
https://doi.org/10.1016/j.plaphy.2008.05.005 http://www.locus.ufv.br/handle/123456789/19093 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofseries.pt-BR.fl_str_mv |
v. 46, Issue 10, p. 884-890, October 2008 |
dc.rights.driver.fl_str_mv |
Elsevier Masson SAS. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Elsevier Masson SAS. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Plant Physiology and Biochemistry |
publisher.none.fl_str_mv |
Plant Physiology and Biochemistry |
dc.source.none.fl_str_mv |
reponame:LOCUS Repositório Institucional da UFV instname:Universidade Federal de Viçosa (UFV) instacron:UFV |
instname_str |
Universidade Federal de Viçosa (UFV) |
instacron_str |
UFV |
institution |
UFV |
reponame_str |
LOCUS Repositório Institucional da UFV |
collection |
LOCUS Repositório Institucional da UFV |
bitstream.url.fl_str_mv |
https://locus.ufv.br//bitstream/123456789/19093/1/artigo.pdf https://locus.ufv.br//bitstream/123456789/19093/2/license.txt https://locus.ufv.br//bitstream/123456789/19093/3/artigo.pdf.jpg |
bitstream.checksum.fl_str_mv |
8bd4edea138e58a89fefe4117b686fc6 8a4605be74aa9ea9d79846c1fba20a33 d2da44087fe12221f66b10aa19e3b7a9 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV) |
repository.mail.fl_str_mv |
fabiojreis@ufv.br |
_version_ |
1801212868570382336 |