Superfícies de resposta espectro-temporal de imagens do sensor MODIS para classificação de área de soja no Estado do Rio Grande do Sul

Detalhes bibliográficos
Autor(a) principal: Rudorff, Conrado de Moraes
Data de Publicação: 2007
Outros Autores: Rizzi, Rodrigo, Rudorff, Bernardo Friedrich Theodor, Sugawar, Luciana Miura, Vieira, Carlos Antônio Oliveira
Tipo de documento: Artigo
Idioma: por
Título da fonte: LOCUS Repositório Institucional da UFV
Texto Completo: http://dx.doi.org/10.1590/S0103-84782007000100019
http://www.locus.ufv.br/handle/123456789/24871
Resumo: Este trabalho objetivou avaliar o potencial e as limitações das imagens MODIS para classificação e estimativa de área de soja por meio do método de superfície de resposta espectro-temporal (Spectral-Temporal Response Surface - STRS). Um mapa temático das áreas com soja, oriundo da classificação de imagens Landsat do Estado do Rio Grande do Sul, foi utilizado como referência para auxiliar na orientação da amostragem dos pixels de treinamento e para a comparação dos resultados. Seis imagens compostas do sensor MODIS foram utilizadas para a classificação supervisionada da área de soja por meio do algoritmo de máxima verossimilhança (MAXVER) adaptado ao método STRS. Os resultados foram avaliados pelo coeficiente Kappa para a totalidade da área em estudo e também para uma região de latifúndios e outra de minifúndios. O método STRS subestimou em 6,6% a área de soja para toda a região estudada, sendo que a estatística Kappa foi de 0,503. Para as regiões de latifúndios e minifúndios, a área de soja foi superestimada em 8% (Kappa=0,424) e subestimada em 43,4% (Kappa=0,358), respectivamente. As imagens MODIS, por meio do método STRS, demonstraram ter potencial para classificar a área de soja, principalmente em regiões de latifúndios. Em regiões de minifúndios, a correta identificação e classificação das áreas de soja mostrou-se pouco eficiente em razão da baixa resolução espacial das imagens MODIS.
id UFV_5f690698ad9808431ee08f4aaa3eb8c5
oai_identifier_str oai:locus.ufv.br:123456789/24871
network_acronym_str UFV
network_name_str LOCUS Repositório Institucional da UFV
repository_id_str 2145
spelling Rudorff, Conrado de MoraesRizzi, RodrigoRudorff, Bernardo Friedrich TheodorSugawar, Luciana MiuraVieira, Carlos Antônio Oliveira2019-04-30T17:32:43Z2019-04-30T17:32:43Z2007-011678-4596http://dx.doi.org/10.1590/S0103-84782007000100019http://www.locus.ufv.br/handle/123456789/24871Este trabalho objetivou avaliar o potencial e as limitações das imagens MODIS para classificação e estimativa de área de soja por meio do método de superfície de resposta espectro-temporal (Spectral-Temporal Response Surface - STRS). Um mapa temático das áreas com soja, oriundo da classificação de imagens Landsat do Estado do Rio Grande do Sul, foi utilizado como referência para auxiliar na orientação da amostragem dos pixels de treinamento e para a comparação dos resultados. Seis imagens compostas do sensor MODIS foram utilizadas para a classificação supervisionada da área de soja por meio do algoritmo de máxima verossimilhança (MAXVER) adaptado ao método STRS. Os resultados foram avaliados pelo coeficiente Kappa para a totalidade da área em estudo e também para uma região de latifúndios e outra de minifúndios. O método STRS subestimou em 6,6% a área de soja para toda a região estudada, sendo que a estatística Kappa foi de 0,503. Para as regiões de latifúndios e minifúndios, a área de soja foi superestimada em 8% (Kappa=0,424) e subestimada em 43,4% (Kappa=0,358), respectivamente. As imagens MODIS, por meio do método STRS, demonstraram ter potencial para classificar a área de soja, principalmente em regiões de latifúndios. Em regiões de minifúndios, a correta identificação e classificação das áreas de soja mostrou-se pouco eficiente em razão da baixa resolução espacial das imagens MODIS.This paper was aimed at evaluating the potential and the limitations of MODIS images for soybean classification and area estimation through a Spectral-Temporal Response Surface (STRS) method. A soybean thematic map from Rio Grande do Sul State, Brazil, derived from Landsat images was used as reference data to assist both sample training and results comparison. Six 16-day composite MODIS images were classified through a supervised maximum likelihood algorithm (MAXVER) adapted to the STRS method. The results were evaluated using the Kappa coefficient for the entire study area and for one region dominated by large farms and another by small ones. The STRS method underestimated the soybean area by 6.6%, for the entire study area, with a Kappa coefficient of 0.503. For regions with large and small farms the soybean area was overestimated by 8% (Kappa=0.424) and underestimated by 43.4% (Kappa=0.358), respectively. Eventually, MODIS images, through the STRS method, demonstrated good potential to classify and estimate soybean area, mainly in regions with large farms. For regions with small farms the correct identification and classification of soybean areas showed to be less efficient due to the low spatial resolution of MODIS images.porCiência Ruralv. 37, n. 1, p. 118-125, jan./ fev. 2007Sensoriamento remoto agrícolaEstimativa de área de culturas agrícolasImagem de satéliteAgricultural remote sensingCrop area estimationSatellite imageSuperfícies de resposta espectro-temporal de imagens do sensor MODIS para classificação de área de soja no Estado do Rio Grande do Sulinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfinfo:eu-repo/semantics/openAccessreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALartigo.pdfartigo.pdfartigoapplication/pdf872065https://locus.ufv.br//bitstream/123456789/24871/1/artigo.pdf5f89bc3c05014753c06b77254f378290MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://locus.ufv.br//bitstream/123456789/24871/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52123456789/248712019-04-30 14:49:40.953oai:locus.ufv.br:123456789/24871Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452019-04-30T17:49:40LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false
dc.title.pt-BR.fl_str_mv Superfícies de resposta espectro-temporal de imagens do sensor MODIS para classificação de área de soja no Estado do Rio Grande do Sul
title Superfícies de resposta espectro-temporal de imagens do sensor MODIS para classificação de área de soja no Estado do Rio Grande do Sul
spellingShingle Superfícies de resposta espectro-temporal de imagens do sensor MODIS para classificação de área de soja no Estado do Rio Grande do Sul
Rudorff, Conrado de Moraes
Sensoriamento remoto agrícola
Estimativa de área de culturas agrícolas
Imagem de satélite
Agricultural remote sensing
Crop area estimation
Satellite image
title_short Superfícies de resposta espectro-temporal de imagens do sensor MODIS para classificação de área de soja no Estado do Rio Grande do Sul
title_full Superfícies de resposta espectro-temporal de imagens do sensor MODIS para classificação de área de soja no Estado do Rio Grande do Sul
title_fullStr Superfícies de resposta espectro-temporal de imagens do sensor MODIS para classificação de área de soja no Estado do Rio Grande do Sul
title_full_unstemmed Superfícies de resposta espectro-temporal de imagens do sensor MODIS para classificação de área de soja no Estado do Rio Grande do Sul
title_sort Superfícies de resposta espectro-temporal de imagens do sensor MODIS para classificação de área de soja no Estado do Rio Grande do Sul
author Rudorff, Conrado de Moraes
author_facet Rudorff, Conrado de Moraes
Rizzi, Rodrigo
Rudorff, Bernardo Friedrich Theodor
Sugawar, Luciana Miura
Vieira, Carlos Antônio Oliveira
author_role author
author2 Rizzi, Rodrigo
Rudorff, Bernardo Friedrich Theodor
Sugawar, Luciana Miura
Vieira, Carlos Antônio Oliveira
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Rudorff, Conrado de Moraes
Rizzi, Rodrigo
Rudorff, Bernardo Friedrich Theodor
Sugawar, Luciana Miura
Vieira, Carlos Antônio Oliveira
dc.subject.pt-BR.fl_str_mv Sensoriamento remoto agrícola
Estimativa de área de culturas agrícolas
Imagem de satélite
Agricultural remote sensing
Crop area estimation
Satellite image
topic Sensoriamento remoto agrícola
Estimativa de área de culturas agrícolas
Imagem de satélite
Agricultural remote sensing
Crop area estimation
Satellite image
description Este trabalho objetivou avaliar o potencial e as limitações das imagens MODIS para classificação e estimativa de área de soja por meio do método de superfície de resposta espectro-temporal (Spectral-Temporal Response Surface - STRS). Um mapa temático das áreas com soja, oriundo da classificação de imagens Landsat do Estado do Rio Grande do Sul, foi utilizado como referência para auxiliar na orientação da amostragem dos pixels de treinamento e para a comparação dos resultados. Seis imagens compostas do sensor MODIS foram utilizadas para a classificação supervisionada da área de soja por meio do algoritmo de máxima verossimilhança (MAXVER) adaptado ao método STRS. Os resultados foram avaliados pelo coeficiente Kappa para a totalidade da área em estudo e também para uma região de latifúndios e outra de minifúndios. O método STRS subestimou em 6,6% a área de soja para toda a região estudada, sendo que a estatística Kappa foi de 0,503. Para as regiões de latifúndios e minifúndios, a área de soja foi superestimada em 8% (Kappa=0,424) e subestimada em 43,4% (Kappa=0,358), respectivamente. As imagens MODIS, por meio do método STRS, demonstraram ter potencial para classificar a área de soja, principalmente em regiões de latifúndios. Em regiões de minifúndios, a correta identificação e classificação das áreas de soja mostrou-se pouco eficiente em razão da baixa resolução espacial das imagens MODIS.
publishDate 2007
dc.date.issued.fl_str_mv 2007-01
dc.date.accessioned.fl_str_mv 2019-04-30T17:32:43Z
dc.date.available.fl_str_mv 2019-04-30T17:32:43Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1590/S0103-84782007000100019
http://www.locus.ufv.br/handle/123456789/24871
dc.identifier.issn.none.fl_str_mv 1678-4596
identifier_str_mv 1678-4596
url http://dx.doi.org/10.1590/S0103-84782007000100019
http://www.locus.ufv.br/handle/123456789/24871
dc.language.iso.fl_str_mv por
language por
dc.relation.ispartofseries.pt-BR.fl_str_mv v. 37, n. 1, p. 118-125, jan./ fev. 2007
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Ciência Rural
publisher.none.fl_str_mv Ciência Rural
dc.source.none.fl_str_mv reponame:LOCUS Repositório Institucional da UFV
instname:Universidade Federal de Viçosa (UFV)
instacron:UFV
instname_str Universidade Federal de Viçosa (UFV)
instacron_str UFV
institution UFV
reponame_str LOCUS Repositório Institucional da UFV
collection LOCUS Repositório Institucional da UFV
bitstream.url.fl_str_mv https://locus.ufv.br//bitstream/123456789/24871/1/artigo.pdf
https://locus.ufv.br//bitstream/123456789/24871/2/license.txt
bitstream.checksum.fl_str_mv 5f89bc3c05014753c06b77254f378290
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)
repository.mail.fl_str_mv fabiojreis@ufv.br
_version_ 1801212841528655872