Arcabouço para detecção online de outliers para algoritmos de agrupamento em fluxos contínuos de dados

Detalhes bibliográficos
Autor(a) principal: Pereira, Mariana Alves
Data de Publicação: 2017
Tipo de documento: Dissertação
Idioma: por
Título da fonte: LOCUS Repositório Institucional da UFV
Texto Completo: http://www.locus.ufv.br/handle/123456789/17942
Resumo: Avanços da tecnologia acarretam na geração rápida e contínua de massivas quantida- des de dados. Tal cenário requer a criação de algoritmos de agrupamento incremen- tais para extração de conhecimento. Entre as restrições impostas a esses algoritmos, os mesmos devem ser capazes de detectar e tratar possíveis outliers que chegam ao fluxo. O arcabouço desenvolvido nesse trabalho apresenta uma estratégia para a restrição de tratamento e detecção de outliers na componente online dos algoritmos de agrupamento de fluxo de dados. A principal contribuição da proposta em estudo é a capacidade de validar possíveis outliers detectados previamente, com o intuito de manter um modelo sempre atualizado e com qualidade. Para isso, todos os potenci- ais outliers são armazenados em uma memória auxiliar que de tempos em tempos é verificada, agrupando seus objetos, validando os micro-grupos formados por inliers e inserindo-os no modelo. Todos os objetos restantes que não foram validados, são mantidos na memória auxiliar até que se tornem válidos ou obsoletos. Em seguida, objetos obsoletos são removidos. Este trabalho também propõe o CluStreamOD, uma extensão do algoritmo de agrupamento CluStream, que aplica a estratégia em estudo em sua componente online, para tratar outliers. Os experimentos realizados mostram a eficácia do CluStreamOD para detecção e tratamento online de outliers do fluxo em comparação com CluStream, e a potencialidade da abordagem proposta para ser aplicada em outros algoritmos de fluxo de dados baseados em micro-grupos.
id UFV_628292e71069799be21aadd02664b9cd
oai_identifier_str oai:locus.ufv.br:123456789/17942
network_acronym_str UFV
network_name_str LOCUS Repositório Institucional da UFV
repository_id_str 2145
spelling Paiva, Elaine Ribeiro de FariaPereira, Mariana Alveshttp://lattes.cnpq.br/2723336078404906Naldi, Murilo Coelho2018-02-27T14:32:20Z2018-02-27T14:32:20Z2017-07-31PEREIRA, Mariana Alves. Arcabouço para detecção online de outliers para algoritmos de agrupamento em fluxos contínuos de dados. 2017. 50 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Viçosa, Viçosa. 2017.http://www.locus.ufv.br/handle/123456789/17942Avanços da tecnologia acarretam na geração rápida e contínua de massivas quantida- des de dados. Tal cenário requer a criação de algoritmos de agrupamento incremen- tais para extração de conhecimento. Entre as restrições impostas a esses algoritmos, os mesmos devem ser capazes de detectar e tratar possíveis outliers que chegam ao fluxo. O arcabouço desenvolvido nesse trabalho apresenta uma estratégia para a restrição de tratamento e detecção de outliers na componente online dos algoritmos de agrupamento de fluxo de dados. A principal contribuição da proposta em estudo é a capacidade de validar possíveis outliers detectados previamente, com o intuito de manter um modelo sempre atualizado e com qualidade. Para isso, todos os potenci- ais outliers são armazenados em uma memória auxiliar que de tempos em tempos é verificada, agrupando seus objetos, validando os micro-grupos formados por inliers e inserindo-os no modelo. Todos os objetos restantes que não foram validados, são mantidos na memória auxiliar até que se tornem válidos ou obsoletos. Em seguida, objetos obsoletos são removidos. Este trabalho também propõe o CluStreamOD, uma extensão do algoritmo de agrupamento CluStream, que aplica a estratégia em estudo em sua componente online, para tratar outliers. Os experimentos realizados mostram a eficácia do CluStreamOD para detecção e tratamento online de outliers do fluxo em comparação com CluStream, e a potencialidade da abordagem proposta para ser aplicada em outros algoritmos de fluxo de dados baseados em micro-grupos.Advances in technology have led to the rapid and continuous generation of massive amounts of data. Such a scenario requires the creation of incremental clustering algorithms for knowledge extraction. Among the constraints imposed on these al- gorithms, they must be able to detect and treat possible outliers that arrive at the flow. The framework developed in this work presents a strategy for the restriction of treatment and detection of outliers in the online component of the clustering algorithms in data stream. The main contribution of the proposal under study is the ability to validate possible outliers previously detected, in order to maintain a model that is always updated and with quality. For this, all the potential outliers are stored in an auxiliary memory when for time to time is verified, clustering its objects, validating the formed micro-clusters by inserting them into the model. All remaining objects that have not been validated are held in auxiliary memory until they become valid or obsolete. Then obsolete objects are removed. This work also proposes the CluStreamOD, an extension of the CluStream clustering algorithm, which applies the strategy under study in its component online, to treat outliers. Experiments carried out show the efficacy of the CluStreamOD for online detection and treatment of the outliers in the data streams compared to CluStream, and the potentiality of the proposed approach to be applied in other algorithms in data stream based on micro-clusters.Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorporUniversidade Federal de ViçosaDetecção de outliersFluxos contínuos de dadosAgrupamentoComponente onlineCiência da ComputaçãoArcabouço para detecção online de outliers para algoritmos de agrupamento em fluxos contínuos de dadosA framework for online detection of outliers in clusters of continuous data streaminginfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisUniversidade Federal de ViçosaDepartamento de InformáticaMestre em Ciência da ComputaçãoViçosa - MG2017-07-31Mestradoinfo:eu-repo/semantics/openAccessreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALtexto completo.pdftexto completo.pdftexto completoapplication/pdf1919837https://locus.ufv.br//bitstream/123456789/17942/1/texto%20completo.pdf88b24ab33cb2eb64595fbfbf8ffeb254MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://locus.ufv.br//bitstream/123456789/17942/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILtexto completo.pdf.jpgtexto completo.pdf.jpgIM Thumbnailimage/jpeg3693https://locus.ufv.br//bitstream/123456789/17942/3/texto%20completo.pdf.jpg263740b1e511d4050ff3d797d3248276MD53123456789/179422018-02-27 23:00:34.725oai:locus.ufv.br:123456789/17942Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452018-02-28T02:00:34LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false
dc.title.pt-BR.fl_str_mv Arcabouço para detecção online de outliers para algoritmos de agrupamento em fluxos contínuos de dados
dc.title.en.fl_str_mv A framework for online detection of outliers in clusters of continuous data streaming
title Arcabouço para detecção online de outliers para algoritmos de agrupamento em fluxos contínuos de dados
spellingShingle Arcabouço para detecção online de outliers para algoritmos de agrupamento em fluxos contínuos de dados
Pereira, Mariana Alves
Detecção de outliers
Fluxos contínuos de dados
Agrupamento
Componente online
Ciência da Computação
title_short Arcabouço para detecção online de outliers para algoritmos de agrupamento em fluxos contínuos de dados
title_full Arcabouço para detecção online de outliers para algoritmos de agrupamento em fluxos contínuos de dados
title_fullStr Arcabouço para detecção online de outliers para algoritmos de agrupamento em fluxos contínuos de dados
title_full_unstemmed Arcabouço para detecção online de outliers para algoritmos de agrupamento em fluxos contínuos de dados
title_sort Arcabouço para detecção online de outliers para algoritmos de agrupamento em fluxos contínuos de dados
author Pereira, Mariana Alves
author_facet Pereira, Mariana Alves
author_role author
dc.contributor.authorLattes.pt-BR.fl_str_mv http://lattes.cnpq.br/2723336078404906
dc.contributor.none.fl_str_mv Paiva, Elaine Ribeiro de Faria
dc.contributor.author.fl_str_mv Pereira, Mariana Alves
dc.contributor.advisor1.fl_str_mv Naldi, Murilo Coelho
contributor_str_mv Naldi, Murilo Coelho
dc.subject.pt-BR.fl_str_mv Detecção de outliers
Fluxos contínuos de dados
Agrupamento
Componente online
topic Detecção de outliers
Fluxos contínuos de dados
Agrupamento
Componente online
Ciência da Computação
dc.subject.cnpq.fl_str_mv Ciência da Computação
description Avanços da tecnologia acarretam na geração rápida e contínua de massivas quantida- des de dados. Tal cenário requer a criação de algoritmos de agrupamento incremen- tais para extração de conhecimento. Entre as restrições impostas a esses algoritmos, os mesmos devem ser capazes de detectar e tratar possíveis outliers que chegam ao fluxo. O arcabouço desenvolvido nesse trabalho apresenta uma estratégia para a restrição de tratamento e detecção de outliers na componente online dos algoritmos de agrupamento de fluxo de dados. A principal contribuição da proposta em estudo é a capacidade de validar possíveis outliers detectados previamente, com o intuito de manter um modelo sempre atualizado e com qualidade. Para isso, todos os potenci- ais outliers são armazenados em uma memória auxiliar que de tempos em tempos é verificada, agrupando seus objetos, validando os micro-grupos formados por inliers e inserindo-os no modelo. Todos os objetos restantes que não foram validados, são mantidos na memória auxiliar até que se tornem válidos ou obsoletos. Em seguida, objetos obsoletos são removidos. Este trabalho também propõe o CluStreamOD, uma extensão do algoritmo de agrupamento CluStream, que aplica a estratégia em estudo em sua componente online, para tratar outliers. Os experimentos realizados mostram a eficácia do CluStreamOD para detecção e tratamento online de outliers do fluxo em comparação com CluStream, e a potencialidade da abordagem proposta para ser aplicada em outros algoritmos de fluxo de dados baseados em micro-grupos.
publishDate 2017
dc.date.issued.fl_str_mv 2017-07-31
dc.date.accessioned.fl_str_mv 2018-02-27T14:32:20Z
dc.date.available.fl_str_mv 2018-02-27T14:32:20Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv PEREIRA, Mariana Alves. Arcabouço para detecção online de outliers para algoritmos de agrupamento em fluxos contínuos de dados. 2017. 50 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Viçosa, Viçosa. 2017.
dc.identifier.uri.fl_str_mv http://www.locus.ufv.br/handle/123456789/17942
identifier_str_mv PEREIRA, Mariana Alves. Arcabouço para detecção online de outliers para algoritmos de agrupamento em fluxos contínuos de dados. 2017. 50 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Viçosa, Viçosa. 2017.
url http://www.locus.ufv.br/handle/123456789/17942
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Viçosa
publisher.none.fl_str_mv Universidade Federal de Viçosa
dc.source.none.fl_str_mv reponame:LOCUS Repositório Institucional da UFV
instname:Universidade Federal de Viçosa (UFV)
instacron:UFV
instname_str Universidade Federal de Viçosa (UFV)
instacron_str UFV
institution UFV
reponame_str LOCUS Repositório Institucional da UFV
collection LOCUS Repositório Institucional da UFV
bitstream.url.fl_str_mv https://locus.ufv.br//bitstream/123456789/17942/1/texto%20completo.pdf
https://locus.ufv.br//bitstream/123456789/17942/2/license.txt
https://locus.ufv.br//bitstream/123456789/17942/3/texto%20completo.pdf.jpg
bitstream.checksum.fl_str_mv 88b24ab33cb2eb64595fbfbf8ffeb254
8a4605be74aa9ea9d79846c1fba20a33
263740b1e511d4050ff3d797d3248276
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)
repository.mail.fl_str_mv fabiojreis@ufv.br
_version_ 1801212974427275264