NICeSim: An open-source simulator based on machine learning techniques to support medical research on prenatal and perinatal care decision making
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Outros Autores: | , , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | LOCUS Repositório Institucional da UFV |
Texto Completo: | https://doi.org/10.1016/j.artmed.2014.10.001 http://www.locus.ufv.br/handle/123456789/19804 |
Resumo: | This paper describes NICeSim, an open-source simulator that uses machine learning (ML) techniques to aid health professionals to better understand the treatment and prognosis of premature newborns. The application was developed and tested using data collected in a Brazilian hospital. The available data were used to feed an ML pipeline that was designed to create a simulator capable of predicting the outcome (death probability) for newborns admitted to neonatal intensive care units. However, unlike previous scoring systems, our computational tool is not intended to be used at the patients bedside, although it is possible. Our primary goal is to deliver a computational system to aid medical research in understanding the correlation of key variables with the studied outcome so that new standards can be established for future clinical decisions. In the implemented simulation environment, the values of key attributes can be changed using a user-friendly interface, where the impact of each change on the outcome is immediately reported, allowing a quantitative analysis, in addition to a qualitative investigation, and delivering a totally interactive computational tool that facilitates hypothesis construction and testing. Our statistical experiments showed that the resulting model for death prediction could achieve an accuracy of 86.7% and an area under the receiver operating characteristic curve of 0.84 for the positive class. Using this model, three physicians and a neonatal nutritionist performed simulations with key variables correlated with chance of death. The results indicated important tendencies for the effect of each variable and the combination of variables on prognosis. We could also observe values of gestational age and birth weight for which a low Apgar score and the occurrence of respiratory distress syndrome (RDS) could be less or more severe. For instance, we have noticed that for a newborn with 2000 g or more the occurrence of RDS is far less problematic than for neonates weighing less. The significant accuracy demonstrated by our predictive model shows that NICeSim might be used for hypothesis testing to minimize in vivo experiments. We observed that the model delivers predictions that are in very good agreement with the literature, demonstrating that NICeSim might be an important tool for supporting decision making in medical practice. Other very important characteristics of NICeSim are its flexibility and dynamism. NICeSim is flexible because it allows the inclusion and deletion of variables according to the requirements of a particular study. It is also dynamic because it trains a just-in-time model. Therefore, the system is improved as data from new patients become available. Finally, NICeSim can be extended in a cooperative manner because it is an open-source system. |
id |
UFV_64ddc6c90ab0a85d3167c71684b21d59 |
---|---|
oai_identifier_str |
oai:locus.ufv.br:123456789/19804 |
network_acronym_str |
UFV |
network_name_str |
LOCUS Repositório Institucional da UFV |
repository_id_str |
2145 |
spelling |
NICeSim: An open-source simulator based on machine learning techniques to support medical research on prenatal and perinatal care decision makingMachine learning in medicineArtificial neural networksSupport vector machineClinical decision makingPrenatal carePerinatal careThis paper describes NICeSim, an open-source simulator that uses machine learning (ML) techniques to aid health professionals to better understand the treatment and prognosis of premature newborns. The application was developed and tested using data collected in a Brazilian hospital. The available data were used to feed an ML pipeline that was designed to create a simulator capable of predicting the outcome (death probability) for newborns admitted to neonatal intensive care units. However, unlike previous scoring systems, our computational tool is not intended to be used at the patients bedside, although it is possible. Our primary goal is to deliver a computational system to aid medical research in understanding the correlation of key variables with the studied outcome so that new standards can be established for future clinical decisions. In the implemented simulation environment, the values of key attributes can be changed using a user-friendly interface, where the impact of each change on the outcome is immediately reported, allowing a quantitative analysis, in addition to a qualitative investigation, and delivering a totally interactive computational tool that facilitates hypothesis construction and testing. Our statistical experiments showed that the resulting model for death prediction could achieve an accuracy of 86.7% and an area under the receiver operating characteristic curve of 0.84 for the positive class. Using this model, three physicians and a neonatal nutritionist performed simulations with key variables correlated with chance of death. The results indicated important tendencies for the effect of each variable and the combination of variables on prognosis. We could also observe values of gestational age and birth weight for which a low Apgar score and the occurrence of respiratory distress syndrome (RDS) could be less or more severe. For instance, we have noticed that for a newborn with 2000 g or more the occurrence of RDS is far less problematic than for neonates weighing less. The significant accuracy demonstrated by our predictive model shows that NICeSim might be used for hypothesis testing to minimize in vivo experiments. We observed that the model delivers predictions that are in very good agreement with the literature, demonstrating that NICeSim might be an important tool for supporting decision making in medical practice. Other very important characteristics of NICeSim are its flexibility and dynamism. NICeSim is flexible because it allows the inclusion and deletion of variables according to the requirements of a particular study. It is also dynamic because it trains a just-in-time model. Therefore, the system is improved as data from new patients become available. Finally, NICeSim can be extended in a cooperative manner because it is an open-source system.Artificial Intelligence in Medicine2018-05-25T14:44:51Z2018-05-25T14:44:51Z2014-10-05info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlepdfapplication/pdf09333657https://doi.org/10.1016/j.artmed.2014.10.001http://www.locus.ufv.br/handle/123456789/19804engv. 62, Issue 3, p. 193-201, November 2014Elsevier B.V.info:eu-repo/semantics/openAccessCerqueira, Fabio RibeiroFerreira, Tiago GeraldoOliveira, Alcione de PaivaAugusto, Douglas AdrianoKrempser, EduardoBarbosa, Helio José CorrêaFranceschini, Sylvia do Carmo CastroFreitas, Brunnella Alcantara Chagas deGomes, Andreia PatriciaSiqueira-Batista, Rodrigoreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFV2024-07-12T07:06:37Zoai:locus.ufv.br:123456789/19804Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452024-07-12T07:06:37LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false |
dc.title.none.fl_str_mv |
NICeSim: An open-source simulator based on machine learning techniques to support medical research on prenatal and perinatal care decision making |
title |
NICeSim: An open-source simulator based on machine learning techniques to support medical research on prenatal and perinatal care decision making |
spellingShingle |
NICeSim: An open-source simulator based on machine learning techniques to support medical research on prenatal and perinatal care decision making Cerqueira, Fabio Ribeiro Machine learning in medicine Artificial neural networks Support vector machine Clinical decision making Prenatal care Perinatal care |
title_short |
NICeSim: An open-source simulator based on machine learning techniques to support medical research on prenatal and perinatal care decision making |
title_full |
NICeSim: An open-source simulator based on machine learning techniques to support medical research on prenatal and perinatal care decision making |
title_fullStr |
NICeSim: An open-source simulator based on machine learning techniques to support medical research on prenatal and perinatal care decision making |
title_full_unstemmed |
NICeSim: An open-source simulator based on machine learning techniques to support medical research on prenatal and perinatal care decision making |
title_sort |
NICeSim: An open-source simulator based on machine learning techniques to support medical research on prenatal and perinatal care decision making |
author |
Cerqueira, Fabio Ribeiro |
author_facet |
Cerqueira, Fabio Ribeiro Ferreira, Tiago Geraldo Oliveira, Alcione de Paiva Augusto, Douglas Adriano Krempser, Eduardo Barbosa, Helio José Corrêa Franceschini, Sylvia do Carmo Castro Freitas, Brunnella Alcantara Chagas de Gomes, Andreia Patricia Siqueira-Batista, Rodrigo |
author_role |
author |
author2 |
Ferreira, Tiago Geraldo Oliveira, Alcione de Paiva Augusto, Douglas Adriano Krempser, Eduardo Barbosa, Helio José Corrêa Franceschini, Sylvia do Carmo Castro Freitas, Brunnella Alcantara Chagas de Gomes, Andreia Patricia Siqueira-Batista, Rodrigo |
author2_role |
author author author author author author author author author |
dc.contributor.author.fl_str_mv |
Cerqueira, Fabio Ribeiro Ferreira, Tiago Geraldo Oliveira, Alcione de Paiva Augusto, Douglas Adriano Krempser, Eduardo Barbosa, Helio José Corrêa Franceschini, Sylvia do Carmo Castro Freitas, Brunnella Alcantara Chagas de Gomes, Andreia Patricia Siqueira-Batista, Rodrigo |
dc.subject.por.fl_str_mv |
Machine learning in medicine Artificial neural networks Support vector machine Clinical decision making Prenatal care Perinatal care |
topic |
Machine learning in medicine Artificial neural networks Support vector machine Clinical decision making Prenatal care Perinatal care |
description |
This paper describes NICeSim, an open-source simulator that uses machine learning (ML) techniques to aid health professionals to better understand the treatment and prognosis of premature newborns. The application was developed and tested using data collected in a Brazilian hospital. The available data were used to feed an ML pipeline that was designed to create a simulator capable of predicting the outcome (death probability) for newborns admitted to neonatal intensive care units. However, unlike previous scoring systems, our computational tool is not intended to be used at the patients bedside, although it is possible. Our primary goal is to deliver a computational system to aid medical research in understanding the correlation of key variables with the studied outcome so that new standards can be established for future clinical decisions. In the implemented simulation environment, the values of key attributes can be changed using a user-friendly interface, where the impact of each change on the outcome is immediately reported, allowing a quantitative analysis, in addition to a qualitative investigation, and delivering a totally interactive computational tool that facilitates hypothesis construction and testing. Our statistical experiments showed that the resulting model for death prediction could achieve an accuracy of 86.7% and an area under the receiver operating characteristic curve of 0.84 for the positive class. Using this model, three physicians and a neonatal nutritionist performed simulations with key variables correlated with chance of death. The results indicated important tendencies for the effect of each variable and the combination of variables on prognosis. We could also observe values of gestational age and birth weight for which a low Apgar score and the occurrence of respiratory distress syndrome (RDS) could be less or more severe. For instance, we have noticed that for a newborn with 2000 g or more the occurrence of RDS is far less problematic than for neonates weighing less. The significant accuracy demonstrated by our predictive model shows that NICeSim might be used for hypothesis testing to minimize in vivo experiments. We observed that the model delivers predictions that are in very good agreement with the literature, demonstrating that NICeSim might be an important tool for supporting decision making in medical practice. Other very important characteristics of NICeSim are its flexibility and dynamism. NICeSim is flexible because it allows the inclusion and deletion of variables according to the requirements of a particular study. It is also dynamic because it trains a just-in-time model. Therefore, the system is improved as data from new patients become available. Finally, NICeSim can be extended in a cooperative manner because it is an open-source system. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-10-05 2018-05-25T14:44:51Z 2018-05-25T14:44:51Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
09333657 https://doi.org/10.1016/j.artmed.2014.10.001 http://www.locus.ufv.br/handle/123456789/19804 |
identifier_str_mv |
09333657 |
url |
https://doi.org/10.1016/j.artmed.2014.10.001 http://www.locus.ufv.br/handle/123456789/19804 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
v. 62, Issue 3, p. 193-201, November 2014 |
dc.rights.driver.fl_str_mv |
Elsevier B.V. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Elsevier B.V. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
pdf application/pdf |
dc.publisher.none.fl_str_mv |
Artificial Intelligence in Medicine |
publisher.none.fl_str_mv |
Artificial Intelligence in Medicine |
dc.source.none.fl_str_mv |
reponame:LOCUS Repositório Institucional da UFV instname:Universidade Federal de Viçosa (UFV) instacron:UFV |
instname_str |
Universidade Federal de Viçosa (UFV) |
instacron_str |
UFV |
institution |
UFV |
reponame_str |
LOCUS Repositório Institucional da UFV |
collection |
LOCUS Repositório Institucional da UFV |
repository.name.fl_str_mv |
LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV) |
repository.mail.fl_str_mv |
fabiojreis@ufv.br |
_version_ |
1817559899351023616 |