Prediction of lignin content in different parts of sugarcane using Near-Infrared Spectroscopy (NIR), Ordered Predictors Selection (OPS), and Partial Least Squares (PLS)

Detalhes bibliográficos
Autor(a) principal: Assis, Camila
Data de Publicação: 2017
Outros Autores: Ramos, Rachel S., Silva, Lidiane A., Kist, Volmir, Barbosa, Márcio H.P., Teofilo, Reinaldo F.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: LOCUS Repositório Institucional da UFV
Texto Completo: https://doi.org/10.1177/0003702817704147
http://www.locus.ufv.br/handle/123456789/18678
Resumo: O artigo não contém resumo em português
id UFV_651f4291e1b913704fe4e9d87fde235f
oai_identifier_str oai:locus.ufv.br:123456789/18678
network_acronym_str UFV
network_name_str LOCUS Repositório Institucional da UFV
repository_id_str 2145
spelling Assis, CamilaRamos, Rachel S.Silva, Lidiane A.Kist, VolmirBarbosa, Márcio H.P.Teofilo, Reinaldo F.2018-04-06T10:36:23Z2018-04-06T10:36:23Z2017-04-2819433530https://doi.org/10.1177/0003702817704147http://www.locus.ufv.br/handle/123456789/18678O artigo não contém resumo em portuguêsThe building of multivariate calibration models using near-infrared spectroscopy (NIR) and partial least squares (PLS) to estimate the lignin content in different parts of sugarcane genotypes is presented. Laboratory analyses were performed to determine the lignin content using the Klason method. The independent variables were obtained from different materials: dry bagasse, bagasse-with-juice, leaf, and stalk. The NIR spectra in the range of 10 000–4000 cmÀ1 were obtained directly for each material. The models were built using PLS regression, and different algorithms for variable selection were tested and compared: iPLS, biPLS, genetic algorithm (GA), and the ordered predictors selection method (OPS). The best models were obtained by feature selection with the OPS algorithm. The values of the root mean square error prediction (RMSEP), correlation of prediction (RP), and ratio of performance to deviation (RPD) were, respectively, for dry bagasse equal to 0.85, 0.97, and 2.87; for bagasse-with-juice equal to 0.65, 0.94, and 2.77; for leaf equal to 0.58, 0.96, and 2.56; for the middle stalk equal to 0.61, 0.95, and 3.24; and for the top stalk equal to 0.58, 0.96, and 2.34. The OPS algorithm selected fewer variables, with greater predictive capacity. All the models are reliable, with high accuracy for predicting lignin in sugarcane, and significantly reduce the time to perform the analysis, the cost and the chemical reagent consumption, thus optimizing the entire process. In general, the future application of these models will have a positive impact on the biofuels industry, where there is a need for rapid decision-making regarding clone production and genetic breeding program.engApplied Spectroscopyv. 71, n. 8, p. 2001-2012, Abril 2017SugarcaneLigninStalkPartial least squares regressionPLSVariable selectionPrediction of lignin content in different parts of sugarcane using Near-Infrared Spectroscopy (NIR), Ordered Predictors Selection (OPS), and Partial Least Squares (PLS)info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfinfo:eu-repo/semantics/openAccessreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALartigo.pdfartigo.pdftexto completoapplication/pdf1594925https://locus.ufv.br//bitstream/123456789/18678/1/artigo.pdf71b21260557ab3d64bb2f9d94986f10eMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://locus.ufv.br//bitstream/123456789/18678/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILartigo.pdf.jpgartigo.pdf.jpgIM Thumbnailimage/jpeg6125https://locus.ufv.br//bitstream/123456789/18678/3/artigo.pdf.jpg72cab960d79741447d72be351df9d245MD53123456789/186782018-04-06 23:00:45.407oai:locus.ufv.br:123456789/18678Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452018-04-07T02:00:45LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false
dc.title.en.fl_str_mv Prediction of lignin content in different parts of sugarcane using Near-Infrared Spectroscopy (NIR), Ordered Predictors Selection (OPS), and Partial Least Squares (PLS)
title Prediction of lignin content in different parts of sugarcane using Near-Infrared Spectroscopy (NIR), Ordered Predictors Selection (OPS), and Partial Least Squares (PLS)
spellingShingle Prediction of lignin content in different parts of sugarcane using Near-Infrared Spectroscopy (NIR), Ordered Predictors Selection (OPS), and Partial Least Squares (PLS)
Assis, Camila
Sugarcane
Lignin
Stalk
Partial least squares regression
PLS
Variable selection
title_short Prediction of lignin content in different parts of sugarcane using Near-Infrared Spectroscopy (NIR), Ordered Predictors Selection (OPS), and Partial Least Squares (PLS)
title_full Prediction of lignin content in different parts of sugarcane using Near-Infrared Spectroscopy (NIR), Ordered Predictors Selection (OPS), and Partial Least Squares (PLS)
title_fullStr Prediction of lignin content in different parts of sugarcane using Near-Infrared Spectroscopy (NIR), Ordered Predictors Selection (OPS), and Partial Least Squares (PLS)
title_full_unstemmed Prediction of lignin content in different parts of sugarcane using Near-Infrared Spectroscopy (NIR), Ordered Predictors Selection (OPS), and Partial Least Squares (PLS)
title_sort Prediction of lignin content in different parts of sugarcane using Near-Infrared Spectroscopy (NIR), Ordered Predictors Selection (OPS), and Partial Least Squares (PLS)
author Assis, Camila
author_facet Assis, Camila
Ramos, Rachel S.
Silva, Lidiane A.
Kist, Volmir
Barbosa, Márcio H.P.
Teofilo, Reinaldo F.
author_role author
author2 Ramos, Rachel S.
Silva, Lidiane A.
Kist, Volmir
Barbosa, Márcio H.P.
Teofilo, Reinaldo F.
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Assis, Camila
Ramos, Rachel S.
Silva, Lidiane A.
Kist, Volmir
Barbosa, Márcio H.P.
Teofilo, Reinaldo F.
dc.subject.pt-BR.fl_str_mv Sugarcane
Lignin
Stalk
Partial least squares regression
PLS
Variable selection
topic Sugarcane
Lignin
Stalk
Partial least squares regression
PLS
Variable selection
description O artigo não contém resumo em português
publishDate 2017
dc.date.issued.fl_str_mv 2017-04-28
dc.date.accessioned.fl_str_mv 2018-04-06T10:36:23Z
dc.date.available.fl_str_mv 2018-04-06T10:36:23Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://doi.org/10.1177/0003702817704147
http://www.locus.ufv.br/handle/123456789/18678
dc.identifier.issn.none.fl_str_mv 19433530
identifier_str_mv 19433530
url https://doi.org/10.1177/0003702817704147
http://www.locus.ufv.br/handle/123456789/18678
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartofseries.pt-BR.fl_str_mv v. 71, n. 8, p. 2001-2012, Abril 2017
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Applied Spectroscopy
publisher.none.fl_str_mv Applied Spectroscopy
dc.source.none.fl_str_mv reponame:LOCUS Repositório Institucional da UFV
instname:Universidade Federal de Viçosa (UFV)
instacron:UFV
instname_str Universidade Federal de Viçosa (UFV)
instacron_str UFV
institution UFV
reponame_str LOCUS Repositório Institucional da UFV
collection LOCUS Repositório Institucional da UFV
bitstream.url.fl_str_mv https://locus.ufv.br//bitstream/123456789/18678/1/artigo.pdf
https://locus.ufv.br//bitstream/123456789/18678/2/license.txt
https://locus.ufv.br//bitstream/123456789/18678/3/artigo.pdf.jpg
bitstream.checksum.fl_str_mv 71b21260557ab3d64bb2f9d94986f10e
8a4605be74aa9ea9d79846c1fba20a33
72cab960d79741447d72be351df9d245
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)
repository.mail.fl_str_mv fabiojreis@ufv.br
_version_ 1801213132287246336