Prediction of lignin content in different parts of sugarcane using Near-Infrared Spectroscopy (NIR), Ordered Predictors Selection (OPS), and Partial Least Squares (PLS)
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | LOCUS Repositório Institucional da UFV |
Texto Completo: | https://doi.org/10.1177/0003702817704147 http://www.locus.ufv.br/handle/123456789/18678 |
Resumo: | O artigo não contém resumo em português |
id |
UFV_651f4291e1b913704fe4e9d87fde235f |
---|---|
oai_identifier_str |
oai:locus.ufv.br:123456789/18678 |
network_acronym_str |
UFV |
network_name_str |
LOCUS Repositório Institucional da UFV |
repository_id_str |
2145 |
spelling |
Assis, CamilaRamos, Rachel S.Silva, Lidiane A.Kist, VolmirBarbosa, Márcio H.P.Teofilo, Reinaldo F.2018-04-06T10:36:23Z2018-04-06T10:36:23Z2017-04-2819433530https://doi.org/10.1177/0003702817704147http://www.locus.ufv.br/handle/123456789/18678O artigo não contém resumo em portuguêsThe building of multivariate calibration models using near-infrared spectroscopy (NIR) and partial least squares (PLS) to estimate the lignin content in different parts of sugarcane genotypes is presented. Laboratory analyses were performed to determine the lignin content using the Klason method. The independent variables were obtained from different materials: dry bagasse, bagasse-with-juice, leaf, and stalk. The NIR spectra in the range of 10 000–4000 cmÀ1 were obtained directly for each material. The models were built using PLS regression, and different algorithms for variable selection were tested and compared: iPLS, biPLS, genetic algorithm (GA), and the ordered predictors selection method (OPS). The best models were obtained by feature selection with the OPS algorithm. The values of the root mean square error prediction (RMSEP), correlation of prediction (RP), and ratio of performance to deviation (RPD) were, respectively, for dry bagasse equal to 0.85, 0.97, and 2.87; for bagasse-with-juice equal to 0.65, 0.94, and 2.77; for leaf equal to 0.58, 0.96, and 2.56; for the middle stalk equal to 0.61, 0.95, and 3.24; and for the top stalk equal to 0.58, 0.96, and 2.34. The OPS algorithm selected fewer variables, with greater predictive capacity. All the models are reliable, with high accuracy for predicting lignin in sugarcane, and significantly reduce the time to perform the analysis, the cost and the chemical reagent consumption, thus optimizing the entire process. In general, the future application of these models will have a positive impact on the biofuels industry, where there is a need for rapid decision-making regarding clone production and genetic breeding program.engApplied Spectroscopyv. 71, n. 8, p. 2001-2012, Abril 2017SugarcaneLigninStalkPartial least squares regressionPLSVariable selectionPrediction of lignin content in different parts of sugarcane using Near-Infrared Spectroscopy (NIR), Ordered Predictors Selection (OPS), and Partial Least Squares (PLS)info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfinfo:eu-repo/semantics/openAccessreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALartigo.pdfartigo.pdftexto completoapplication/pdf1594925https://locus.ufv.br//bitstream/123456789/18678/1/artigo.pdf71b21260557ab3d64bb2f9d94986f10eMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://locus.ufv.br//bitstream/123456789/18678/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILartigo.pdf.jpgartigo.pdf.jpgIM Thumbnailimage/jpeg6125https://locus.ufv.br//bitstream/123456789/18678/3/artigo.pdf.jpg72cab960d79741447d72be351df9d245MD53123456789/186782018-04-06 23:00:45.407oai:locus.ufv.br:123456789/18678Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452018-04-07T02:00:45LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false |
dc.title.en.fl_str_mv |
Prediction of lignin content in different parts of sugarcane using Near-Infrared Spectroscopy (NIR), Ordered Predictors Selection (OPS), and Partial Least Squares (PLS) |
title |
Prediction of lignin content in different parts of sugarcane using Near-Infrared Spectroscopy (NIR), Ordered Predictors Selection (OPS), and Partial Least Squares (PLS) |
spellingShingle |
Prediction of lignin content in different parts of sugarcane using Near-Infrared Spectroscopy (NIR), Ordered Predictors Selection (OPS), and Partial Least Squares (PLS) Assis, Camila Sugarcane Lignin Stalk Partial least squares regression PLS Variable selection |
title_short |
Prediction of lignin content in different parts of sugarcane using Near-Infrared Spectroscopy (NIR), Ordered Predictors Selection (OPS), and Partial Least Squares (PLS) |
title_full |
Prediction of lignin content in different parts of sugarcane using Near-Infrared Spectroscopy (NIR), Ordered Predictors Selection (OPS), and Partial Least Squares (PLS) |
title_fullStr |
Prediction of lignin content in different parts of sugarcane using Near-Infrared Spectroscopy (NIR), Ordered Predictors Selection (OPS), and Partial Least Squares (PLS) |
title_full_unstemmed |
Prediction of lignin content in different parts of sugarcane using Near-Infrared Spectroscopy (NIR), Ordered Predictors Selection (OPS), and Partial Least Squares (PLS) |
title_sort |
Prediction of lignin content in different parts of sugarcane using Near-Infrared Spectroscopy (NIR), Ordered Predictors Selection (OPS), and Partial Least Squares (PLS) |
author |
Assis, Camila |
author_facet |
Assis, Camila Ramos, Rachel S. Silva, Lidiane A. Kist, Volmir Barbosa, Márcio H.P. Teofilo, Reinaldo F. |
author_role |
author |
author2 |
Ramos, Rachel S. Silva, Lidiane A. Kist, Volmir Barbosa, Márcio H.P. Teofilo, Reinaldo F. |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Assis, Camila Ramos, Rachel S. Silva, Lidiane A. Kist, Volmir Barbosa, Márcio H.P. Teofilo, Reinaldo F. |
dc.subject.pt-BR.fl_str_mv |
Sugarcane Lignin Stalk Partial least squares regression PLS Variable selection |
topic |
Sugarcane Lignin Stalk Partial least squares regression PLS Variable selection |
description |
O artigo não contém resumo em português |
publishDate |
2017 |
dc.date.issued.fl_str_mv |
2017-04-28 |
dc.date.accessioned.fl_str_mv |
2018-04-06T10:36:23Z |
dc.date.available.fl_str_mv |
2018-04-06T10:36:23Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://doi.org/10.1177/0003702817704147 http://www.locus.ufv.br/handle/123456789/18678 |
dc.identifier.issn.none.fl_str_mv |
19433530 |
identifier_str_mv |
19433530 |
url |
https://doi.org/10.1177/0003702817704147 http://www.locus.ufv.br/handle/123456789/18678 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofseries.pt-BR.fl_str_mv |
v. 71, n. 8, p. 2001-2012, Abril 2017 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Applied Spectroscopy |
publisher.none.fl_str_mv |
Applied Spectroscopy |
dc.source.none.fl_str_mv |
reponame:LOCUS Repositório Institucional da UFV instname:Universidade Federal de Viçosa (UFV) instacron:UFV |
instname_str |
Universidade Federal de Viçosa (UFV) |
instacron_str |
UFV |
institution |
UFV |
reponame_str |
LOCUS Repositório Institucional da UFV |
collection |
LOCUS Repositório Institucional da UFV |
bitstream.url.fl_str_mv |
https://locus.ufv.br//bitstream/123456789/18678/1/artigo.pdf https://locus.ufv.br//bitstream/123456789/18678/2/license.txt https://locus.ufv.br//bitstream/123456789/18678/3/artigo.pdf.jpg |
bitstream.checksum.fl_str_mv |
71b21260557ab3d64bb2f9d94986f10e 8a4605be74aa9ea9d79846c1fba20a33 72cab960d79741447d72be351df9d245 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV) |
repository.mail.fl_str_mv |
fabiojreis@ufv.br |
_version_ |
1801213132287246336 |