Spatial interpolation of rainfall erosivity using artificial nbeural networks for southern Brazil conditions

Detalhes bibliográficos
Autor(a) principal: Moreira, Michel Castro
Data de Publicação: 2016
Outros Autores: Oliveira, Thiago Emanuel Cunha de, Cecílio, Roberto Avelino, Pinto, Francisco de Assis de Carvalho, Pruski, Fernando Falco
Tipo de documento: Artigo
Idioma: eng
Título da fonte: LOCUS Repositório Institucional da UFV
Texto Completo: http://dx.doi.org/10.1590/18069657rbcs20150132
http://www.locus.ufv.br/handle/123456789/14290
Resumo: Water erosion is the process of disaggregation and transport of sediments, and rainfall erosivity is a numerical value that expresses the erosive capacity of rain. The scarcity of information on rainfall erosivity makes it difficult or impossible to use to estimate losses occasioned by the erosive process. The objective of this study was to develop Artificial Neural Networks (ANNs) for spatial interpolation of the monthly and annual values of rainfall erosivity at any location in the state of Rio Grande do Sul, and a software that enables the use of these networks in a simple and fast manner. This experiment used 103 rainfall stations in Rio Grande do Sul and their surrounding area to generate synthetic rainfall series on the software ClimaBR 2.0. Rainfall erosivity was determined by summing the values of the EI30 and KE >25 indexes, considering two methodologies for obtaining the kinetic energy of rainfall. With these values of rainfall erosivity and latitude, longitude, and altitude of the stations, the ANNs were trained and tested for spatializations of rainfall erosivity. To facilitate the use of the ANNs, a computer program was generated, called netErosividade RS, which makes feasible the use of ANNs to estimate the values of rainfall erosivity for any location in the state of Rio Grande do Sul.
id UFV_6add3f4fb9c0fb5722a48b5d9dbf0c99
oai_identifier_str oai:locus.ufv.br:123456789/14290
network_acronym_str UFV
network_name_str LOCUS Repositório Institucional da UFV
repository_id_str 2145
spelling Moreira, Michel CastroOliveira, Thiago Emanuel Cunha deCecílio, Roberto AvelinoPinto, Francisco de Assis de CarvalhoPruski, Fernando Falco2017-12-04T09:46:44Z2017-12-04T09:46:44Z2016-09-191806-9657http://dx.doi.org/10.1590/18069657rbcs20150132http://www.locus.ufv.br/handle/123456789/14290Water erosion is the process of disaggregation and transport of sediments, and rainfall erosivity is a numerical value that expresses the erosive capacity of rain. The scarcity of information on rainfall erosivity makes it difficult or impossible to use to estimate losses occasioned by the erosive process. The objective of this study was to develop Artificial Neural Networks (ANNs) for spatial interpolation of the monthly and annual values of rainfall erosivity at any location in the state of Rio Grande do Sul, and a software that enables the use of these networks in a simple and fast manner. This experiment used 103 rainfall stations in Rio Grande do Sul and their surrounding area to generate synthetic rainfall series on the software ClimaBR 2.0. Rainfall erosivity was determined by summing the values of the EI30 and KE >25 indexes, considering two methodologies for obtaining the kinetic energy of rainfall. With these values of rainfall erosivity and latitude, longitude, and altitude of the stations, the ANNs were trained and tested for spatializations of rainfall erosivity. To facilitate the use of the ANNs, a computer program was generated, called netErosividade RS, which makes feasible the use of ANNs to estimate the values of rainfall erosivity for any location in the state of Rio Grande do Sul.engRevista Brasileira de Ciência do Solov. 40, e0150132, Sep. 2016Erosive potential of rainfallSoil conservationUniversal soil loss equationSpatial interpolation of rainfall erosivity using artificial nbeural networks for southern Brazil conditionsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfinfo:eu-repo/semantics/openAccessreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINAL0100-0683-rbcs-18069657rbcs20150132.pdf0100-0683-rbcs-18069657rbcs20150132.pdftexto completoapplication/pdf552084https://locus.ufv.br//bitstream/123456789/14290/1/0100-0683-rbcs-18069657rbcs20150132.pdf0f78e964fc79bbbe3f4c2ca8c6deab05MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://locus.ufv.br//bitstream/123456789/14290/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAIL0100-0683-rbcs-18069657rbcs20150132.pdf.jpg0100-0683-rbcs-18069657rbcs20150132.pdf.jpgIM Thumbnailimage/jpeg4567https://locus.ufv.br//bitstream/123456789/14290/3/0100-0683-rbcs-18069657rbcs20150132.pdf.jpgeb440156d3a024c1ec5d47f9ea9933a1MD53123456789/142902017-12-04 22:00:47.645oai:locus.ufv.br:123456789/14290Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452017-12-05T01:00:47LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false
dc.title.en.fl_str_mv Spatial interpolation of rainfall erosivity using artificial nbeural networks for southern Brazil conditions
title Spatial interpolation of rainfall erosivity using artificial nbeural networks for southern Brazil conditions
spellingShingle Spatial interpolation of rainfall erosivity using artificial nbeural networks for southern Brazil conditions
Moreira, Michel Castro
Erosive potential of rainfall
Soil conservation
Universal soil loss equation
title_short Spatial interpolation of rainfall erosivity using artificial nbeural networks for southern Brazil conditions
title_full Spatial interpolation of rainfall erosivity using artificial nbeural networks for southern Brazil conditions
title_fullStr Spatial interpolation of rainfall erosivity using artificial nbeural networks for southern Brazil conditions
title_full_unstemmed Spatial interpolation of rainfall erosivity using artificial nbeural networks for southern Brazil conditions
title_sort Spatial interpolation of rainfall erosivity using artificial nbeural networks for southern Brazil conditions
author Moreira, Michel Castro
author_facet Moreira, Michel Castro
Oliveira, Thiago Emanuel Cunha de
Cecílio, Roberto Avelino
Pinto, Francisco de Assis de Carvalho
Pruski, Fernando Falco
author_role author
author2 Oliveira, Thiago Emanuel Cunha de
Cecílio, Roberto Avelino
Pinto, Francisco de Assis de Carvalho
Pruski, Fernando Falco
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Moreira, Michel Castro
Oliveira, Thiago Emanuel Cunha de
Cecílio, Roberto Avelino
Pinto, Francisco de Assis de Carvalho
Pruski, Fernando Falco
dc.subject.pt-BR.fl_str_mv Erosive potential of rainfall
Soil conservation
Universal soil loss equation
topic Erosive potential of rainfall
Soil conservation
Universal soil loss equation
description Water erosion is the process of disaggregation and transport of sediments, and rainfall erosivity is a numerical value that expresses the erosive capacity of rain. The scarcity of information on rainfall erosivity makes it difficult or impossible to use to estimate losses occasioned by the erosive process. The objective of this study was to develop Artificial Neural Networks (ANNs) for spatial interpolation of the monthly and annual values of rainfall erosivity at any location in the state of Rio Grande do Sul, and a software that enables the use of these networks in a simple and fast manner. This experiment used 103 rainfall stations in Rio Grande do Sul and their surrounding area to generate synthetic rainfall series on the software ClimaBR 2.0. Rainfall erosivity was determined by summing the values of the EI30 and KE >25 indexes, considering two methodologies for obtaining the kinetic energy of rainfall. With these values of rainfall erosivity and latitude, longitude, and altitude of the stations, the ANNs were trained and tested for spatializations of rainfall erosivity. To facilitate the use of the ANNs, a computer program was generated, called netErosividade RS, which makes feasible the use of ANNs to estimate the values of rainfall erosivity for any location in the state of Rio Grande do Sul.
publishDate 2016
dc.date.issued.fl_str_mv 2016-09-19
dc.date.accessioned.fl_str_mv 2017-12-04T09:46:44Z
dc.date.available.fl_str_mv 2017-12-04T09:46:44Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1590/18069657rbcs20150132
http://www.locus.ufv.br/handle/123456789/14290
dc.identifier.issn.none.fl_str_mv 1806-9657
identifier_str_mv 1806-9657
url http://dx.doi.org/10.1590/18069657rbcs20150132
http://www.locus.ufv.br/handle/123456789/14290
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartofseries.pt-BR.fl_str_mv v. 40, e0150132, Sep. 2016
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Revista Brasileira de Ciência do Solo
publisher.none.fl_str_mv Revista Brasileira de Ciência do Solo
dc.source.none.fl_str_mv reponame:LOCUS Repositório Institucional da UFV
instname:Universidade Federal de Viçosa (UFV)
instacron:UFV
instname_str Universidade Federal de Viçosa (UFV)
instacron_str UFV
institution UFV
reponame_str LOCUS Repositório Institucional da UFV
collection LOCUS Repositório Institucional da UFV
bitstream.url.fl_str_mv https://locus.ufv.br//bitstream/123456789/14290/1/0100-0683-rbcs-18069657rbcs20150132.pdf
https://locus.ufv.br//bitstream/123456789/14290/2/license.txt
https://locus.ufv.br//bitstream/123456789/14290/3/0100-0683-rbcs-18069657rbcs20150132.pdf.jpg
bitstream.checksum.fl_str_mv 0f78e964fc79bbbe3f4c2ca8c6deab05
8a4605be74aa9ea9d79846c1fba20a33
eb440156d3a024c1ec5d47f9ea9933a1
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)
repository.mail.fl_str_mv fabiojreis@ufv.br
_version_ 1801212934759645184