Spatial interpolation of rainfall erosivity using artificial nbeural networks for southern Brazil conditions
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | LOCUS Repositório Institucional da UFV |
Texto Completo: | http://dx.doi.org/10.1590/18069657rbcs20150132 http://www.locus.ufv.br/handle/123456789/14290 |
Resumo: | Water erosion is the process of disaggregation and transport of sediments, and rainfall erosivity is a numerical value that expresses the erosive capacity of rain. The scarcity of information on rainfall erosivity makes it difficult or impossible to use to estimate losses occasioned by the erosive process. The objective of this study was to develop Artificial Neural Networks (ANNs) for spatial interpolation of the monthly and annual values of rainfall erosivity at any location in the state of Rio Grande do Sul, and a software that enables the use of these networks in a simple and fast manner. This experiment used 103 rainfall stations in Rio Grande do Sul and their surrounding area to generate synthetic rainfall series on the software ClimaBR 2.0. Rainfall erosivity was determined by summing the values of the EI30 and KE >25 indexes, considering two methodologies for obtaining the kinetic energy of rainfall. With these values of rainfall erosivity and latitude, longitude, and altitude of the stations, the ANNs were trained and tested for spatializations of rainfall erosivity. To facilitate the use of the ANNs, a computer program was generated, called netErosividade RS, which makes feasible the use of ANNs to estimate the values of rainfall erosivity for any location in the state of Rio Grande do Sul. |
id |
UFV_6add3f4fb9c0fb5722a48b5d9dbf0c99 |
---|---|
oai_identifier_str |
oai:locus.ufv.br:123456789/14290 |
network_acronym_str |
UFV |
network_name_str |
LOCUS Repositório Institucional da UFV |
repository_id_str |
2145 |
spelling |
Moreira, Michel CastroOliveira, Thiago Emanuel Cunha deCecílio, Roberto AvelinoPinto, Francisco de Assis de CarvalhoPruski, Fernando Falco2017-12-04T09:46:44Z2017-12-04T09:46:44Z2016-09-191806-9657http://dx.doi.org/10.1590/18069657rbcs20150132http://www.locus.ufv.br/handle/123456789/14290Water erosion is the process of disaggregation and transport of sediments, and rainfall erosivity is a numerical value that expresses the erosive capacity of rain. The scarcity of information on rainfall erosivity makes it difficult or impossible to use to estimate losses occasioned by the erosive process. The objective of this study was to develop Artificial Neural Networks (ANNs) for spatial interpolation of the monthly and annual values of rainfall erosivity at any location in the state of Rio Grande do Sul, and a software that enables the use of these networks in a simple and fast manner. This experiment used 103 rainfall stations in Rio Grande do Sul and their surrounding area to generate synthetic rainfall series on the software ClimaBR 2.0. Rainfall erosivity was determined by summing the values of the EI30 and KE >25 indexes, considering two methodologies for obtaining the kinetic energy of rainfall. With these values of rainfall erosivity and latitude, longitude, and altitude of the stations, the ANNs were trained and tested for spatializations of rainfall erosivity. To facilitate the use of the ANNs, a computer program was generated, called netErosividade RS, which makes feasible the use of ANNs to estimate the values of rainfall erosivity for any location in the state of Rio Grande do Sul.engRevista Brasileira de Ciência do Solov. 40, e0150132, Sep. 2016Erosive potential of rainfallSoil conservationUniversal soil loss equationSpatial interpolation of rainfall erosivity using artificial nbeural networks for southern Brazil conditionsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfinfo:eu-repo/semantics/openAccessreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINAL0100-0683-rbcs-18069657rbcs20150132.pdf0100-0683-rbcs-18069657rbcs20150132.pdftexto completoapplication/pdf552084https://locus.ufv.br//bitstream/123456789/14290/1/0100-0683-rbcs-18069657rbcs20150132.pdf0f78e964fc79bbbe3f4c2ca8c6deab05MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://locus.ufv.br//bitstream/123456789/14290/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAIL0100-0683-rbcs-18069657rbcs20150132.pdf.jpg0100-0683-rbcs-18069657rbcs20150132.pdf.jpgIM Thumbnailimage/jpeg4567https://locus.ufv.br//bitstream/123456789/14290/3/0100-0683-rbcs-18069657rbcs20150132.pdf.jpgeb440156d3a024c1ec5d47f9ea9933a1MD53123456789/142902017-12-04 22:00:47.645oai:locus.ufv.br:123456789/14290Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452017-12-05T01:00:47LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false |
dc.title.en.fl_str_mv |
Spatial interpolation of rainfall erosivity using artificial nbeural networks for southern Brazil conditions |
title |
Spatial interpolation of rainfall erosivity using artificial nbeural networks for southern Brazil conditions |
spellingShingle |
Spatial interpolation of rainfall erosivity using artificial nbeural networks for southern Brazil conditions Moreira, Michel Castro Erosive potential of rainfall Soil conservation Universal soil loss equation |
title_short |
Spatial interpolation of rainfall erosivity using artificial nbeural networks for southern Brazil conditions |
title_full |
Spatial interpolation of rainfall erosivity using artificial nbeural networks for southern Brazil conditions |
title_fullStr |
Spatial interpolation of rainfall erosivity using artificial nbeural networks for southern Brazil conditions |
title_full_unstemmed |
Spatial interpolation of rainfall erosivity using artificial nbeural networks for southern Brazil conditions |
title_sort |
Spatial interpolation of rainfall erosivity using artificial nbeural networks for southern Brazil conditions |
author |
Moreira, Michel Castro |
author_facet |
Moreira, Michel Castro Oliveira, Thiago Emanuel Cunha de Cecílio, Roberto Avelino Pinto, Francisco de Assis de Carvalho Pruski, Fernando Falco |
author_role |
author |
author2 |
Oliveira, Thiago Emanuel Cunha de Cecílio, Roberto Avelino Pinto, Francisco de Assis de Carvalho Pruski, Fernando Falco |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Moreira, Michel Castro Oliveira, Thiago Emanuel Cunha de Cecílio, Roberto Avelino Pinto, Francisco de Assis de Carvalho Pruski, Fernando Falco |
dc.subject.pt-BR.fl_str_mv |
Erosive potential of rainfall Soil conservation Universal soil loss equation |
topic |
Erosive potential of rainfall Soil conservation Universal soil loss equation |
description |
Water erosion is the process of disaggregation and transport of sediments, and rainfall erosivity is a numerical value that expresses the erosive capacity of rain. The scarcity of information on rainfall erosivity makes it difficult or impossible to use to estimate losses occasioned by the erosive process. The objective of this study was to develop Artificial Neural Networks (ANNs) for spatial interpolation of the monthly and annual values of rainfall erosivity at any location in the state of Rio Grande do Sul, and a software that enables the use of these networks in a simple and fast manner. This experiment used 103 rainfall stations in Rio Grande do Sul and their surrounding area to generate synthetic rainfall series on the software ClimaBR 2.0. Rainfall erosivity was determined by summing the values of the EI30 and KE >25 indexes, considering two methodologies for obtaining the kinetic energy of rainfall. With these values of rainfall erosivity and latitude, longitude, and altitude of the stations, the ANNs were trained and tested for spatializations of rainfall erosivity. To facilitate the use of the ANNs, a computer program was generated, called netErosividade RS, which makes feasible the use of ANNs to estimate the values of rainfall erosivity for any location in the state of Rio Grande do Sul. |
publishDate |
2016 |
dc.date.issued.fl_str_mv |
2016-09-19 |
dc.date.accessioned.fl_str_mv |
2017-12-04T09:46:44Z |
dc.date.available.fl_str_mv |
2017-12-04T09:46:44Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1590/18069657rbcs20150132 http://www.locus.ufv.br/handle/123456789/14290 |
dc.identifier.issn.none.fl_str_mv |
1806-9657 |
identifier_str_mv |
1806-9657 |
url |
http://dx.doi.org/10.1590/18069657rbcs20150132 http://www.locus.ufv.br/handle/123456789/14290 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofseries.pt-BR.fl_str_mv |
v. 40, e0150132, Sep. 2016 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Revista Brasileira de Ciência do Solo |
publisher.none.fl_str_mv |
Revista Brasileira de Ciência do Solo |
dc.source.none.fl_str_mv |
reponame:LOCUS Repositório Institucional da UFV instname:Universidade Federal de Viçosa (UFV) instacron:UFV |
instname_str |
Universidade Federal de Viçosa (UFV) |
instacron_str |
UFV |
institution |
UFV |
reponame_str |
LOCUS Repositório Institucional da UFV |
collection |
LOCUS Repositório Institucional da UFV |
bitstream.url.fl_str_mv |
https://locus.ufv.br//bitstream/123456789/14290/1/0100-0683-rbcs-18069657rbcs20150132.pdf https://locus.ufv.br//bitstream/123456789/14290/2/license.txt https://locus.ufv.br//bitstream/123456789/14290/3/0100-0683-rbcs-18069657rbcs20150132.pdf.jpg |
bitstream.checksum.fl_str_mv |
0f78e964fc79bbbe3f4c2ca8c6deab05 8a4605be74aa9ea9d79846c1fba20a33 eb440156d3a024c1ec5d47f9ea9933a1 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV) |
repository.mail.fl_str_mv |
fabiojreis@ufv.br |
_version_ |
1801212934759645184 |