Estabilidade topológica e fluxos singulares
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | LOCUS Repositório Institucional da UFV |
Texto Completo: | http://locus.ufv.br//handle/123456789/25746 |
Resumo: | Neste trabalho o principal conceito usado é de estabilidade topológica para fluxos. O estudo da estabilidade topológica inicia-se com Walters [11]. Para fixar esse conceito, apresentamos as definições necessárias tais como: variedades topológicas e/ou diferenciáveis, conjuntos limites, índice de um fluxo e Fluxo Smale. O principal objetivo deste trabalho é provar o seguinte Teorema: Sejam φ um fluxo topologicamente estável, X uma componente de cadeia de φ, e γ 1 , γ 2 órbitas fechadas hiperbólicas de φ contidas em X. Então γ 1 e γ 2 têm o mesmo índice. Esse resultado foi provado em [11]. Também será apresentado uma breve introdução do Modelo Geométrico do Atrator de Lorenz, com o objetivo de mostrar que esse Modelo Geométrico não é topologicamente estável. |
id |
UFV_7302f09d5435061bd296cc9728957518 |
---|---|
oai_identifier_str |
oai:locus.ufv.br:123456789/25746 |
network_acronym_str |
UFV |
network_name_str |
LOCUS Repositório Institucional da UFV |
repository_id_str |
2145 |
spelling |
Batistelle, Marinahttp://lattes.cnpq.br/9895164128693780García, Bulmer Mejía2019-06-07T17:15:02Z2019-06-07T17:15:02Z2019-02-27BATISTELLE, Marina. Estabilidade topológica e fluxos singulares. 2019. 39 f. Dissertação (Mestrado em Matemática) - Universidade Federal de Viçosa, Viçosa. 2019.http://locus.ufv.br//handle/123456789/25746Neste trabalho o principal conceito usado é de estabilidade topológica para fluxos. O estudo da estabilidade topológica inicia-se com Walters [11]. Para fixar esse conceito, apresentamos as definições necessárias tais como: variedades topológicas e/ou diferenciáveis, conjuntos limites, índice de um fluxo e Fluxo Smale. O principal objetivo deste trabalho é provar o seguinte Teorema: Sejam φ um fluxo topologicamente estável, X uma componente de cadeia de φ, e γ 1 , γ 2 órbitas fechadas hiperbólicas de φ contidas em X. Então γ 1 e γ 2 têm o mesmo índice. Esse resultado foi provado em [11]. Também será apresentado uma breve introdução do Modelo Geométrico do Atrator de Lorenz, com o objetivo de mostrar que esse Modelo Geométrico não é topologicamente estável.In this work, the main concept used is topological stability for flows. The study of topological stability starts with Walters [11]. To fix this concept, we will present the necessary definitions such as: topological and/or differentiable manifolds, limits sets, index of a flow, and Smale Flow. The main objective of this work is to prove the following Theorem: Suppose φ a topologically stable flow, X a chain recorrent component of φ, and γ 1 , γ 2 closed hyperbolic orbits of φ contained in X. Then γ 1 and γ 2 have the same index. This result was proved in [11]. We also present brief introduction of the Geometric Model of the Atractor of Lorenz, with the objective of showing that this Geometrical Model is not topologically stable.Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorporUniversidade Federal de ViçosaSistemas dinâmicos diferenciaisTopologia - EstabilidadeSingularidade (Matemática)Sistemas DinâmicosEstabilidade topológica e fluxos singularesTopological stability and singular flowsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisUniversidade Federal de ViçosaDepartamento de MatemáticaMestre em MatemáticaViçosa - MG2019-02-27Mestradoinfo:eu-repo/semantics/openAccessreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALtexto completo.pdftexto completo.pdftexto completoapplication/pdf981215https://locus.ufv.br//bitstream/123456789/25746/1/texto%20completo.pdf4c9916c3422e35cebcde889705510ddbMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://locus.ufv.br//bitstream/123456789/25746/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52123456789/257462019-06-07 14:36:07.698oai:locus.ufv.br:123456789/25746Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452019-06-07T17:36:07LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false |
dc.title.pt-BR.fl_str_mv |
Estabilidade topológica e fluxos singulares |
dc.title.en.fl_str_mv |
Topological stability and singular flows |
title |
Estabilidade topológica e fluxos singulares |
spellingShingle |
Estabilidade topológica e fluxos singulares Batistelle, Marina Sistemas dinâmicos diferenciais Topologia - Estabilidade Singularidade (Matemática) Sistemas Dinâmicos |
title_short |
Estabilidade topológica e fluxos singulares |
title_full |
Estabilidade topológica e fluxos singulares |
title_fullStr |
Estabilidade topológica e fluxos singulares |
title_full_unstemmed |
Estabilidade topológica e fluxos singulares |
title_sort |
Estabilidade topológica e fluxos singulares |
author |
Batistelle, Marina |
author_facet |
Batistelle, Marina |
author_role |
author |
dc.contributor.authorLattes.pt-BR.fl_str_mv |
http://lattes.cnpq.br/9895164128693780 |
dc.contributor.author.fl_str_mv |
Batistelle, Marina |
dc.contributor.advisor1.fl_str_mv |
García, Bulmer Mejía |
contributor_str_mv |
García, Bulmer Mejía |
dc.subject.pt-BR.fl_str_mv |
Sistemas dinâmicos diferenciais Topologia - Estabilidade Singularidade (Matemática) |
topic |
Sistemas dinâmicos diferenciais Topologia - Estabilidade Singularidade (Matemática) Sistemas Dinâmicos |
dc.subject.cnpq.fl_str_mv |
Sistemas Dinâmicos |
description |
Neste trabalho o principal conceito usado é de estabilidade topológica para fluxos. O estudo da estabilidade topológica inicia-se com Walters [11]. Para fixar esse conceito, apresentamos as definições necessárias tais como: variedades topológicas e/ou diferenciáveis, conjuntos limites, índice de um fluxo e Fluxo Smale. O principal objetivo deste trabalho é provar o seguinte Teorema: Sejam φ um fluxo topologicamente estável, X uma componente de cadeia de φ, e γ 1 , γ 2 órbitas fechadas hiperbólicas de φ contidas em X. Então γ 1 e γ 2 têm o mesmo índice. Esse resultado foi provado em [11]. Também será apresentado uma breve introdução do Modelo Geométrico do Atrator de Lorenz, com o objetivo de mostrar que esse Modelo Geométrico não é topologicamente estável. |
publishDate |
2019 |
dc.date.accessioned.fl_str_mv |
2019-06-07T17:15:02Z |
dc.date.available.fl_str_mv |
2019-06-07T17:15:02Z |
dc.date.issued.fl_str_mv |
2019-02-27 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
BATISTELLE, Marina. Estabilidade topológica e fluxos singulares. 2019. 39 f. Dissertação (Mestrado em Matemática) - Universidade Federal de Viçosa, Viçosa. 2019. |
dc.identifier.uri.fl_str_mv |
http://locus.ufv.br//handle/123456789/25746 |
identifier_str_mv |
BATISTELLE, Marina. Estabilidade topológica e fluxos singulares. 2019. 39 f. Dissertação (Mestrado em Matemática) - Universidade Federal de Viçosa, Viçosa. 2019. |
url |
http://locus.ufv.br//handle/123456789/25746 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Viçosa |
publisher.none.fl_str_mv |
Universidade Federal de Viçosa |
dc.source.none.fl_str_mv |
reponame:LOCUS Repositório Institucional da UFV instname:Universidade Federal de Viçosa (UFV) instacron:UFV |
instname_str |
Universidade Federal de Viçosa (UFV) |
instacron_str |
UFV |
institution |
UFV |
reponame_str |
LOCUS Repositório Institucional da UFV |
collection |
LOCUS Repositório Institucional da UFV |
bitstream.url.fl_str_mv |
https://locus.ufv.br//bitstream/123456789/25746/1/texto%20completo.pdf https://locus.ufv.br//bitstream/123456789/25746/2/license.txt |
bitstream.checksum.fl_str_mv |
4c9916c3422e35cebcde889705510ddb 8a4605be74aa9ea9d79846c1fba20a33 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV) |
repository.mail.fl_str_mv |
fabiojreis@ufv.br |
_version_ |
1801213004081004544 |