Correlação entre a expressão dos genes da subunidade α da β-conglicinina e GmFAD2-1A durante o desenvolvimento da semente de soja

Detalhes bibliográficos
Autor(a) principal: Cunha, Pricila da Silva
Data de Publicação: 2010
Tipo de documento: Dissertação
Idioma: por
Título da fonte: LOCUS Repositório Institucional da UFV
Texto Completo: http://locus.ufv.br/handle/123456789/2418
Resumo: The increase of the oleic acid content and decrease of the polyunsaturated fatty acids levels (linolenic and linoleic) in the soybean seed may be achieved by reducing of the microsomal ω-6 desaturase enzyme activity through GmFAD2-1A gene silencing which codify this enzyme, resulting in the production of oils with high oxidative stability. The gene silencing must occur specifically in the seed, as it must not alter plant agronomics characteristics and not to interfere negativelly with plant growth and development. For that, the transgene must be under the control of a seed-specific promoter such as the promoter of the β-conglycinin α subunit gene (pBC promoter). The main objective of this work was to correlate the gene expression pattern that codify the β-conglycinin α subunit (BC gene) with the GmFAD2-1A gene expression pattern during the soybean seed development in five soybean cultivars that differ in the protein content ("normal" and "high") and life cycle (early and late maturity). And, through this correlation, to analyse if the pBC promoter presents potential to be used in future experiments of soybean genetic transformation which has as goal to silence the GmFAD2-1A gene. The analysis of the BC and GmFAD2-1A genes expression pattern was done by Real Time PCR (qRT-PCR) using two endogenous controls (GAPDH and EF1b). The β-conglycinin α subunit was quantified bySDS-PAGE/densitometry during seed development in all five cultivars. In general, the β-conglycinin α subunit concentration was lower in initial stages of seed development, increasing in middle stages towards the final of maturation, indicating that there was an accumulation of this polypeptide during the seed filling, and presenting a high and significative concentration in the mature seed. The cultivars of "normal" protein content showed higher α subunit concentrations when compared with their respective isolines of higher protein content, which occurred in middle stages towards the final maturation. The two endogenous genes (GAPDH and EF1b) normalized the BC and GmFAD2-1A genes expression data in a very similar way, with the main differences occurring in the expression patterns of the two targets genes in the middle and final stages of maturation in the early maturity cultivars. However, GAPDH was a better normalizer gene than EF1b, showing a more stable expression among all treatments. In general, the BC gene showed higher expression pattern in initial and middle stages of the seed maturation, and in these stages can be suggested that the pBC promoter reached its maximum capacity to activate transcription of the target gene, with the BC gene expression decreasing towards final stages of the seed development. It can be suggested that this decreasing in BC gene expression is associated with a decreasing in pBC promoter activity, although the pBC promoter still remains sufficiently active to ensure a high level of transgene expression in future experiments of soybean genetic transformation. None significative difference was found in BC gene expression pattern when was compared a soybean cultivar and its respective isoline of higher protein content during seed development. In general, while the α subunit concentration was lower in initial stages of maturation (1st and 2nd), the BC gene showed a higher expression pattern in initial and middle stages of seed development (2nd and 3rd). From the third stage towards the final of maturation, there was an increase in the α subunit concentration while there was a decreasing in BC gene expression in several of these stages. The main difference was found in mature seed of all cultivars, which showed a high polypeptide concentration despite of an almost null expression of the BC gene. In general, it was not found a BC gene expression pattern and of α subunit concentration that allowed to differentiate the group of late maturity cultivars of the group of early maturity cultivars. For the GmFAD2-1A gene, in general, the late maturity cultivars showed highergene expression pattern in middle stages towards the final of seed development, while in early maturity cultivars the GmFAD2-1A gene showed higher expression pattern in initial and middle stages of maturation. In the same manner as for the BC gene, the GmFAD2-1A gene expression was almost null in the mature seed for all cultivars. In general, the correlation between the pattern of BC and GmFAD2-1A genes expression in the late maturity cultivars showed that at stages where there were a higher rate of GmFAD2-1A gene transcription the expression of BC gene decreased after to reach a peak of expression in third stage. However, the BC gene expression was still higher than the GmFAD2-1A gene at these stages. Thus, for the late maturity cultivars, at stages where the GmFAD2-1A gene showed the highest expression values can be suggested that the pBC promoter is active or it is with a maximum capacity to activate the target gene transcription. In early maturity cultivars this correlation showed that the BC and GmFAD2-1A genes presented a similar expression pattern, with high levels of genes expression in initial and middle stages of maturation (2nd and 3rd), decreasing in later stages of seed development. Therefore, it can be suggested that the highest pBC promoter activity occurred in the same stages where the highest values of GmFAD2-1A gene expression were found. Thus, it can be suggested that the promoter of the β-conglycinin α subunit gene presents a high potential to be used in future experiments of genetic transformation which has as goal to silence the GmFAD2-1A gene during the soybean seed development in all cultivars analysed.
id UFV_73a29f54aba255caf77f274f5ec0dc08
oai_identifier_str oai:locus.ufv.br:123456789/2418
network_acronym_str UFV
network_name_str LOCUS Repositório Institucional da UFV
repository_id_str 2145
spelling Cunha, Pricila da Silvahttp://lattes.cnpq.br/2712020388620043Fietto, Luciano Gomeshttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4763824H8Barros, Everaldo Gonçalves dehttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4781285J6Moreira, Maurílio Alveshttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4796105P2Fietto, Juliana Lopes Rangelhttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4790238D0Oliveira, Márcia Rodrigues Carvalhohttp://lattes.cnpq.br/05687267131115582015-03-26T13:07:29Z2011-10-202015-03-26T13:07:29Z2010-02-25CUNHA, Pricila da Silva. Correlation between the genes expression of the β-conglycinin α subunit and GmFAD2-1A during soybean seed development. 2010. 125 f. Dissertação (Mestrado em Bioquímica e Biologia molecular de plantas; Bioquímica e Biologia molecular animal) - Universidade Federal de Viçosa, Viçosa, 2010.http://locus.ufv.br/handle/123456789/2418The increase of the oleic acid content and decrease of the polyunsaturated fatty acids levels (linolenic and linoleic) in the soybean seed may be achieved by reducing of the microsomal ω-6 desaturase enzyme activity through GmFAD2-1A gene silencing which codify this enzyme, resulting in the production of oils with high oxidative stability. The gene silencing must occur specifically in the seed, as it must not alter plant agronomics characteristics and not to interfere negativelly with plant growth and development. For that, the transgene must be under the control of a seed-specific promoter such as the promoter of the β-conglycinin α subunit gene (pBC promoter). The main objective of this work was to correlate the gene expression pattern that codify the β-conglycinin α subunit (BC gene) with the GmFAD2-1A gene expression pattern during the soybean seed development in five soybean cultivars that differ in the protein content ("normal" and "high") and life cycle (early and late maturity). And, through this correlation, to analyse if the pBC promoter presents potential to be used in future experiments of soybean genetic transformation which has as goal to silence the GmFAD2-1A gene. The analysis of the BC and GmFAD2-1A genes expression pattern was done by Real Time PCR (qRT-PCR) using two endogenous controls (GAPDH and EF1b). The β-conglycinin α subunit was quantified bySDS-PAGE/densitometry during seed development in all five cultivars. In general, the β-conglycinin α subunit concentration was lower in initial stages of seed development, increasing in middle stages towards the final of maturation, indicating that there was an accumulation of this polypeptide during the seed filling, and presenting a high and significative concentration in the mature seed. The cultivars of "normal" protein content showed higher α subunit concentrations when compared with their respective isolines of higher protein content, which occurred in middle stages towards the final maturation. The two endogenous genes (GAPDH and EF1b) normalized the BC and GmFAD2-1A genes expression data in a very similar way, with the main differences occurring in the expression patterns of the two targets genes in the middle and final stages of maturation in the early maturity cultivars. However, GAPDH was a better normalizer gene than EF1b, showing a more stable expression among all treatments. In general, the BC gene showed higher expression pattern in initial and middle stages of the seed maturation, and in these stages can be suggested that the pBC promoter reached its maximum capacity to activate transcription of the target gene, with the BC gene expression decreasing towards final stages of the seed development. It can be suggested that this decreasing in BC gene expression is associated with a decreasing in pBC promoter activity, although the pBC promoter still remains sufficiently active to ensure a high level of transgene expression in future experiments of soybean genetic transformation. None significative difference was found in BC gene expression pattern when was compared a soybean cultivar and its respective isoline of higher protein content during seed development. In general, while the α subunit concentration was lower in initial stages of maturation (1st and 2nd), the BC gene showed a higher expression pattern in initial and middle stages of seed development (2nd and 3rd). From the third stage towards the final of maturation, there was an increase in the α subunit concentration while there was a decreasing in BC gene expression in several of these stages. The main difference was found in mature seed of all cultivars, which showed a high polypeptide concentration despite of an almost null expression of the BC gene. In general, it was not found a BC gene expression pattern and of α subunit concentration that allowed to differentiate the group of late maturity cultivars of the group of early maturity cultivars. For the GmFAD2-1A gene, in general, the late maturity cultivars showed highergene expression pattern in middle stages towards the final of seed development, while in early maturity cultivars the GmFAD2-1A gene showed higher expression pattern in initial and middle stages of maturation. In the same manner as for the BC gene, the GmFAD2-1A gene expression was almost null in the mature seed for all cultivars. In general, the correlation between the pattern of BC and GmFAD2-1A genes expression in the late maturity cultivars showed that at stages where there were a higher rate of GmFAD2-1A gene transcription the expression of BC gene decreased after to reach a peak of expression in third stage. However, the BC gene expression was still higher than the GmFAD2-1A gene at these stages. Thus, for the late maturity cultivars, at stages where the GmFAD2-1A gene showed the highest expression values can be suggested that the pBC promoter is active or it is with a maximum capacity to activate the target gene transcription. In early maturity cultivars this correlation showed that the BC and GmFAD2-1A genes presented a similar expression pattern, with high levels of genes expression in initial and middle stages of maturation (2nd and 3rd), decreasing in later stages of seed development. Therefore, it can be suggested that the highest pBC promoter activity occurred in the same stages where the highest values of GmFAD2-1A gene expression were found. Thus, it can be suggested that the promoter of the β-conglycinin α subunit gene presents a high potential to be used in future experiments of genetic transformation which has as goal to silence the GmFAD2-1A gene during the soybean seed development in all cultivars analysed.O aumento no conteúdo de ácido oléico e diminuição nos níveis dos ácidos graxos polinsaturados (linolênico e linoléico) na semente de soja pode ser alcançado pela redução da atividade da enzima ω-6 dessaturase microssomal através do silenciamento do gene GmFAD2-1A que codifica para essa enzima, resultando na produção de óleos com elevada estabilidade oxidativa. O silenciamento deve ocorrer especificamente na semente de forma a não alterar as características agronômicas da planta e não interferir negativamente no seu crescimento e desenvolvimento. Para isso, o transgene deve estar sob controle de um promotor semente-específico como o promotor do gene da subunidade α da β-conglicinina (promotor pBC). O principal objetivo desse trabalho foi correlacionar o padrão de expressão do gene que codifica a subunidade α da β-conglicinina (gene BC) com o padrão de expressão do gene GmFAD2-1A ao longo do desenvolvimento da semente de soja em cinco variedades que diferem quanto ao teor protéico ("normal" e "alto") e ao ciclo de vida (precoce e tardio). E, através dessa correlação, analisar se opromotor pBC apresenta potencial para ser usado em futuros experimentos de transformação genética de soja que tenha como objetivo silenciar o gene GmFAD2-1A. A análise do padrão de expressão dos genes BC e GmFAD2-1A foi feita por PCR em Tempo Real (qRT-PCR) utilizando dois controles endógenos (GAPDH e EF1b). A subunidade α da β-conglicinina foi quantificada por SDSPAGE/ densitometria durante o desenvolvimento da semente em todos os cinco cultivares. De modo geral, a concentração da subunidade α daβ-conglicinina foi inferior em estádios iniciais de desenvolvimento da semente, aumentando em estádios do meio para o final da maturação, indicando que ocorreu um acúmulo desse polipeptídeo ao longo do enchimento do grão, e apresentando uma concentração alta e significativa na semente madura. As variedades de teor protéico "normal" apresentaram concentrações superiores da subunidade α quando comparadas com suas respectivas isolinhas de maiores teores protéicos, o que ocorreu em estádios do meio para o final da maturação. Os dois genes endógenos (GAPDH e EF1b) normalizaram os dados de expressão dos genes BC e GmFAD2-1A de modo muito similar, com as principais diferenças ocorrendo nos perfis de expressão dos dois genes alvos em estádios do meio e final da maturação nas variedades de ciclo precoce. Entretanto, GAPDH foi melhor normalizador do que EF1b, mostrando expressão mais estável entre todos os tratamentos. De modo geral, o gene BC apresentou maior padrão de expressão em estádios do início e meio da maturação da semente, sendo que nesses estádios pode-se sugerir que o promotor pBC atingiu sua capacidade máxima para ativar a transcrição do gene alvo, com a expressão do gene BC diminuindo em direção aos estádios finais de desenvolvimento da semente. Pode-se sugerir que essa diminuição na expressão do gene BC esteja associada à uma diminuição na atividade do promotor pBC, embora ele ainda permanecesse suficientemente ativo para garantir um nível alto de expressão do transgene em futuros experimentos transformação genética de soja. Nenhuma diferença significativa foi encontrada no padrão de expressão do gene BC quando se comparou uma variedade de soja e sua respectiva isolinha de maior teor protéico ao longo do desenvolvimento da semente. De modo geral, enquanto a concentração da subunidade α foi inferior em estádios iniciais da maturação (1° e 2°), o gene BC apresentou maior padrão de expressão em estádios do início e meio do desenvolvimento da semente (2° e 3°). A partir do 3° estádio em direção ao final da maturação, houve um aumento na concentração da subunidade α enquanto verificou-se uma diminuição na expressão do gene BC em vários desses estádios. A principal diferença foi encontrada na semente madura de todas as variedades que apresentou uma alta concentração do polipeptídeo, apesar de uma expressão quase nula do gene BC. De forma geral, não foi encontrado um padrão de expressão do gene BC e de concentração da subunidade α que permitisse diferenciar o grupo de variedades de ciclo tardio do grupo de ciclo precoce. Em relação ao gene GmFAD2-1A, de modo geral, as variedades de ciclo tardio apresentaram maior padrão de expressão gênica em estádios do meio para o final do desenvolvimento da semente, enquanto nos cultivares de ciclo precoce o gene GmFAD2-1A mostrou maior padrão de expressão em estádios do início e meio da maturação. Assim como para o gene BC a expressão de GmFAD2-1A foi quase nula na semente madura para todas as variedades. De modo geral, a correlação entre o padrão de expressão dos genes BC e GmFAD2-1A nas variedades de ciclo tardio mostrou que nos estádios em que houve maior taxa de transcrição do gene GmFAD2-1A a expressão do gene BC diminuiu após atingir um pico de expressão no 3° estádio. Entretanto, a expressão do gene BC foi ainda superior à do gene GmFAD2-1A nesses estádios. Dessa forma, para os cultivares de ciclo tardio, nos estádios em que o gene GmFAD2-1A apresentou os maiores valores de expressão pode-se sugerir que o promotor pBC está ativo ou com uma capacidade máxima para ativar a transcrição do gene alvo. Nos cultivares de ciclo precoce essa correlação mostrou que os genes BC e GmFAD2-1A apresentaram um padrão de expressão semelhante, com valores elevados de expressão gênica em estádios do início e meio da maturação (2° e 3°), diminuindo em estádios posteriores de desenvolvimento da semente. Portanto, pode-se sugerir que a maior atividade do promotor pBC ocorreu nos mesmos estádios em que foram encontrados os maiores valores de expressão do gene GmFAD2-1A. Dessa forma, pode-se sugerir que o promotor do gene da subunidade α daβ-conglicinina apresenta elevado potencial para ser usado em futuros experimentos de transformação genética que tenha como objetivo silenciar o gene GmFAD2-1A ao longo do desenvolvimento da semente de soja em todos os cultivares analisados.Fundação de Amparo a Pesquisa do Estado de Minas Geraisapplication/pdfporUniversidade Federal de ViçosaMestrado em Bioquímica AgrícolaUFVBRBioquímica e Biologia molecular de plantas; Bioquímica e Biologia molecular animalSojaGmFAD2-1AExpressão de genesSoybeanGmFAD2-1AGenes expressionCNPQ::CIENCIAS AGRARIAS::AGRONOMIA::FITOTECNIA::MELHORAMENTO VEGETALCorrelação entre a expressão dos genes da subunidade α da β-conglicinina e GmFAD2-1A durante o desenvolvimento da semente de sojaCorrelation between the genes expression of the β-conglycinin α subunit and GmFAD2-1A during soybean seed developmentinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALtexto completo.pdfapplication/pdf1140325https://locus.ufv.br//bitstream/123456789/2418/1/texto%20completo.pdf2ecff37250e43477add6399d7043bcb7MD51TEXTtexto completo.pdf.txttexto completo.pdf.txtExtracted texttext/plain230478https://locus.ufv.br//bitstream/123456789/2418/2/texto%20completo.pdf.txt28af8efbc80f3b26872918d84ca00f74MD52THUMBNAILtexto completo.pdf.jpgtexto completo.pdf.jpgIM Thumbnailimage/jpeg3750https://locus.ufv.br//bitstream/123456789/2418/3/texto%20completo.pdf.jpg8aa4ae7b32670803fd82e9c5497f947eMD53123456789/24182016-04-08 23:02:47.632oai:locus.ufv.br:123456789/2418Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452016-04-09T02:02:47LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false
dc.title.por.fl_str_mv Correlação entre a expressão dos genes da subunidade α da β-conglicinina e GmFAD2-1A durante o desenvolvimento da semente de soja
dc.title.alternative.eng.fl_str_mv Correlation between the genes expression of the β-conglycinin α subunit and GmFAD2-1A during soybean seed development
title Correlação entre a expressão dos genes da subunidade α da β-conglicinina e GmFAD2-1A durante o desenvolvimento da semente de soja
spellingShingle Correlação entre a expressão dos genes da subunidade α da β-conglicinina e GmFAD2-1A durante o desenvolvimento da semente de soja
Cunha, Pricila da Silva
Soja
GmFAD2-1A
Expressão de genes
Soybean
GmFAD2-1A
Genes expression
CNPQ::CIENCIAS AGRARIAS::AGRONOMIA::FITOTECNIA::MELHORAMENTO VEGETAL
title_short Correlação entre a expressão dos genes da subunidade α da β-conglicinina e GmFAD2-1A durante o desenvolvimento da semente de soja
title_full Correlação entre a expressão dos genes da subunidade α da β-conglicinina e GmFAD2-1A durante o desenvolvimento da semente de soja
title_fullStr Correlação entre a expressão dos genes da subunidade α da β-conglicinina e GmFAD2-1A durante o desenvolvimento da semente de soja
title_full_unstemmed Correlação entre a expressão dos genes da subunidade α da β-conglicinina e GmFAD2-1A durante o desenvolvimento da semente de soja
title_sort Correlação entre a expressão dos genes da subunidade α da β-conglicinina e GmFAD2-1A durante o desenvolvimento da semente de soja
author Cunha, Pricila da Silva
author_facet Cunha, Pricila da Silva
author_role author
dc.contributor.authorLattes.por.fl_str_mv http://lattes.cnpq.br/2712020388620043
dc.contributor.author.fl_str_mv Cunha, Pricila da Silva
dc.contributor.advisor-co1.fl_str_mv Fietto, Luciano Gomes
dc.contributor.advisor-co1Lattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4763824H8
dc.contributor.advisor-co2.fl_str_mv Barros, Everaldo Gonçalves de
dc.contributor.advisor-co2Lattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4781285J6
dc.contributor.advisor1.fl_str_mv Moreira, Maurílio Alves
dc.contributor.advisor1Lattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4796105P2
dc.contributor.referee1.fl_str_mv Fietto, Juliana Lopes Rangel
dc.contributor.referee1Lattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4790238D0
dc.contributor.referee2.fl_str_mv Oliveira, Márcia Rodrigues Carvalho
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/0568726713111558
contributor_str_mv Fietto, Luciano Gomes
Barros, Everaldo Gonçalves de
Moreira, Maurílio Alves
Fietto, Juliana Lopes Rangel
Oliveira, Márcia Rodrigues Carvalho
dc.subject.por.fl_str_mv Soja
GmFAD2-1A
Expressão de genes
topic Soja
GmFAD2-1A
Expressão de genes
Soybean
GmFAD2-1A
Genes expression
CNPQ::CIENCIAS AGRARIAS::AGRONOMIA::FITOTECNIA::MELHORAMENTO VEGETAL
dc.subject.eng.fl_str_mv Soybean
GmFAD2-1A
Genes expression
dc.subject.cnpq.fl_str_mv CNPQ::CIENCIAS AGRARIAS::AGRONOMIA::FITOTECNIA::MELHORAMENTO VEGETAL
description The increase of the oleic acid content and decrease of the polyunsaturated fatty acids levels (linolenic and linoleic) in the soybean seed may be achieved by reducing of the microsomal ω-6 desaturase enzyme activity through GmFAD2-1A gene silencing which codify this enzyme, resulting in the production of oils with high oxidative stability. The gene silencing must occur specifically in the seed, as it must not alter plant agronomics characteristics and not to interfere negativelly with plant growth and development. For that, the transgene must be under the control of a seed-specific promoter such as the promoter of the β-conglycinin α subunit gene (pBC promoter). The main objective of this work was to correlate the gene expression pattern that codify the β-conglycinin α subunit (BC gene) with the GmFAD2-1A gene expression pattern during the soybean seed development in five soybean cultivars that differ in the protein content ("normal" and "high") and life cycle (early and late maturity). And, through this correlation, to analyse if the pBC promoter presents potential to be used in future experiments of soybean genetic transformation which has as goal to silence the GmFAD2-1A gene. The analysis of the BC and GmFAD2-1A genes expression pattern was done by Real Time PCR (qRT-PCR) using two endogenous controls (GAPDH and EF1b). The β-conglycinin α subunit was quantified bySDS-PAGE/densitometry during seed development in all five cultivars. In general, the β-conglycinin α subunit concentration was lower in initial stages of seed development, increasing in middle stages towards the final of maturation, indicating that there was an accumulation of this polypeptide during the seed filling, and presenting a high and significative concentration in the mature seed. The cultivars of "normal" protein content showed higher α subunit concentrations when compared with their respective isolines of higher protein content, which occurred in middle stages towards the final maturation. The two endogenous genes (GAPDH and EF1b) normalized the BC and GmFAD2-1A genes expression data in a very similar way, with the main differences occurring in the expression patterns of the two targets genes in the middle and final stages of maturation in the early maturity cultivars. However, GAPDH was a better normalizer gene than EF1b, showing a more stable expression among all treatments. In general, the BC gene showed higher expression pattern in initial and middle stages of the seed maturation, and in these stages can be suggested that the pBC promoter reached its maximum capacity to activate transcription of the target gene, with the BC gene expression decreasing towards final stages of the seed development. It can be suggested that this decreasing in BC gene expression is associated with a decreasing in pBC promoter activity, although the pBC promoter still remains sufficiently active to ensure a high level of transgene expression in future experiments of soybean genetic transformation. None significative difference was found in BC gene expression pattern when was compared a soybean cultivar and its respective isoline of higher protein content during seed development. In general, while the α subunit concentration was lower in initial stages of maturation (1st and 2nd), the BC gene showed a higher expression pattern in initial and middle stages of seed development (2nd and 3rd). From the third stage towards the final of maturation, there was an increase in the α subunit concentration while there was a decreasing in BC gene expression in several of these stages. The main difference was found in mature seed of all cultivars, which showed a high polypeptide concentration despite of an almost null expression of the BC gene. In general, it was not found a BC gene expression pattern and of α subunit concentration that allowed to differentiate the group of late maturity cultivars of the group of early maturity cultivars. For the GmFAD2-1A gene, in general, the late maturity cultivars showed highergene expression pattern in middle stages towards the final of seed development, while in early maturity cultivars the GmFAD2-1A gene showed higher expression pattern in initial and middle stages of maturation. In the same manner as for the BC gene, the GmFAD2-1A gene expression was almost null in the mature seed for all cultivars. In general, the correlation between the pattern of BC and GmFAD2-1A genes expression in the late maturity cultivars showed that at stages where there were a higher rate of GmFAD2-1A gene transcription the expression of BC gene decreased after to reach a peak of expression in third stage. However, the BC gene expression was still higher than the GmFAD2-1A gene at these stages. Thus, for the late maturity cultivars, at stages where the GmFAD2-1A gene showed the highest expression values can be suggested that the pBC promoter is active or it is with a maximum capacity to activate the target gene transcription. In early maturity cultivars this correlation showed that the BC and GmFAD2-1A genes presented a similar expression pattern, with high levels of genes expression in initial and middle stages of maturation (2nd and 3rd), decreasing in later stages of seed development. Therefore, it can be suggested that the highest pBC promoter activity occurred in the same stages where the highest values of GmFAD2-1A gene expression were found. Thus, it can be suggested that the promoter of the β-conglycinin α subunit gene presents a high potential to be used in future experiments of genetic transformation which has as goal to silence the GmFAD2-1A gene during the soybean seed development in all cultivars analysed.
publishDate 2010
dc.date.issued.fl_str_mv 2010-02-25
dc.date.available.fl_str_mv 2011-10-20
2015-03-26T13:07:29Z
dc.date.accessioned.fl_str_mv 2015-03-26T13:07:29Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv CUNHA, Pricila da Silva. Correlation between the genes expression of the β-conglycinin α subunit and GmFAD2-1A during soybean seed development. 2010. 125 f. Dissertação (Mestrado em Bioquímica e Biologia molecular de plantas; Bioquímica e Biologia molecular animal) - Universidade Federal de Viçosa, Viçosa, 2010.
dc.identifier.uri.fl_str_mv http://locus.ufv.br/handle/123456789/2418
identifier_str_mv CUNHA, Pricila da Silva. Correlation between the genes expression of the β-conglycinin α subunit and GmFAD2-1A during soybean seed development. 2010. 125 f. Dissertação (Mestrado em Bioquímica e Biologia molecular de plantas; Bioquímica e Biologia molecular animal) - Universidade Federal de Viçosa, Viçosa, 2010.
url http://locus.ufv.br/handle/123456789/2418
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Viçosa
dc.publisher.program.fl_str_mv Mestrado em Bioquímica Agrícola
dc.publisher.initials.fl_str_mv UFV
dc.publisher.country.fl_str_mv BR
dc.publisher.department.fl_str_mv Bioquímica e Biologia molecular de plantas; Bioquímica e Biologia molecular animal
publisher.none.fl_str_mv Universidade Federal de Viçosa
dc.source.none.fl_str_mv reponame:LOCUS Repositório Institucional da UFV
instname:Universidade Federal de Viçosa (UFV)
instacron:UFV
instname_str Universidade Federal de Viçosa (UFV)
instacron_str UFV
institution UFV
reponame_str LOCUS Repositório Institucional da UFV
collection LOCUS Repositório Institucional da UFV
bitstream.url.fl_str_mv https://locus.ufv.br//bitstream/123456789/2418/1/texto%20completo.pdf
https://locus.ufv.br//bitstream/123456789/2418/2/texto%20completo.pdf.txt
https://locus.ufv.br//bitstream/123456789/2418/3/texto%20completo.pdf.jpg
bitstream.checksum.fl_str_mv 2ecff37250e43477add6399d7043bcb7
28af8efbc80f3b26872918d84ca00f74
8aa4ae7b32670803fd82e9c5497f947e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)
repository.mail.fl_str_mv fabiojreis@ufv.br
_version_ 1801212882035146752