Redes neurais, identidade de modelos e resposta da cebola à adubação nitrogenada
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | LOCUS Repositório Institucional da UFV |
Texto Completo: | http://locus.ufv.br/handle/123456789/4064 |
Resumo: | The study of the productivity curves compared with the amount of nitrogen absorbed by the onion crop is fundamentally important for the elaboration of a more efficient fertilization plan in technical terms as well as in economic terms. Many statistical techniques have been proposed, tested, and improved in order to help boost research in this direction. The justification for this research is the need to assess and improve new statistical techniques that help in obtaining accurate information in order to assist in decision making for improving productivity. For this case, this study aimed to use and evaluate two statistical methods with different specific objectives with respect to the evaluation of nitrogen application in the production of onion cultivars. In the first evaluation, statistical techniques based on regression models were used for adjusting curves for some nitrogen levels related to productivity, performing a survey with four onion cultivars in different locations, and then to carry out the evaluation of the grouping possibility of these statistical models using the models identity test. In this step, it was tried to estimate a curve that could represent together the fertilization response pattern in all four evaluated sites. In the second study, the goal was to verify the techniques efficiency based on neural networks. So, the proposal was to see the possibility of using safely this new concept based on artificial neural networks in research related to the onion cultivars response to nitrogen fertilization. In general, this study describes the successful use of new statistical techniques with emphasis on neural networks that help improve the onion productivity and thereafter to implement and disseminate techniques based on computational intelligence for purposes of study prediction and modeling. |
id |
UFV_7439269e1b42044694446322ca0bebab |
---|---|
oai_identifier_str |
oai:locus.ufv.br:123456789/4064 |
network_acronym_str |
UFV |
network_name_str |
LOCUS Repositório Institucional da UFV |
repository_id_str |
2145 |
spelling |
Rodrigues, Dirceu Zeferinohttp://lattes.cnpq.br/4541310431856092Nascimento, Moyséshttp://lattes.cnpq.br/6544887498494945Cecon, Paulo Robertohttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4788114T5Cruz, Cosme Damiãohttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4788274A6Vidigal, Sanzio Mollicahttp://lattes.cnpq.br/53652385423994392015-03-26T13:32:18Z2013-06-252015-03-26T13:32:18Z2013-03-21RODRIGUES, Dirceu Zeferino. Neural networks, model identity and onions response to nitrogen fertilization. 2013. 90 f. Dissertação (Mestrado em Estatística Aplicada e Biometria) - Universidade Federal de Viçosa, Viçosa, 2013.http://locus.ufv.br/handle/123456789/4064The study of the productivity curves compared with the amount of nitrogen absorbed by the onion crop is fundamentally important for the elaboration of a more efficient fertilization plan in technical terms as well as in economic terms. Many statistical techniques have been proposed, tested, and improved in order to help boost research in this direction. The justification for this research is the need to assess and improve new statistical techniques that help in obtaining accurate information in order to assist in decision making for improving productivity. For this case, this study aimed to use and evaluate two statistical methods with different specific objectives with respect to the evaluation of nitrogen application in the production of onion cultivars. In the first evaluation, statistical techniques based on regression models were used for adjusting curves for some nitrogen levels related to productivity, performing a survey with four onion cultivars in different locations, and then to carry out the evaluation of the grouping possibility of these statistical models using the models identity test. In this step, it was tried to estimate a curve that could represent together the fertilization response pattern in all four evaluated sites. In the second study, the goal was to verify the techniques efficiency based on neural networks. So, the proposal was to see the possibility of using safely this new concept based on artificial neural networks in research related to the onion cultivars response to nitrogen fertilization. In general, this study describes the successful use of new statistical techniques with emphasis on neural networks that help improve the onion productivity and thereafter to implement and disseminate techniques based on computational intelligence for purposes of study prediction and modeling.O estudo das curvas de produtividade comparadas com a quantidade de nitrogênio absorvido pela cultura da cebola é de fundamental importância para a formulação de um plano de adubação que seja mais eficiente tanto em termos técnicos quanto econômicos. Diversas técnicas estatísticas têm sido propostas, testadas e aprimoradas com o intuito de contribuir para alavancar pesquisas nesta direção. A justificativa para este trabalho de pesquisa está na necessidade de avaliar e aprimorar novas técnicas estatísticas que ajudem na obtenção de informações precisas com a finalidade de auxiliar na tomada de decisão visando melhorar a produtividade. Para isso, este estudo teve como objetivo empregar e avaliar duas metodologias de auxílio à estatística, mas com objetivos específicos distintos com respeito à avaliação da aplicação de nitrogênio na produção dos cultivares da cebola. Na primeira avaliação, objetivou-se utilizar técnicas estatísticas baseadas em modelos de regressão e ajustar curvas para alguns níveis de doses de nitrogênio, relacionadas à produtividade, para uma pesquisa realizada com quatro cultivares em locais distintos de cebola e, em seguida, avaliar a possibilidade de agrupamento desses modelos estatísticos obtidos, utilizando o teste de identidade de modelos. Nesta etapa, procurou-se estimar uma curva que representasse, em conjunto, o padrão de resposta à adubação em todos os quatro locais avaliados. No segundo estudo, a meta era verificar a eficiência de técnicas baseadas em redes neurais. Assim, a proposta foi constatar se já é possível utilizar, com segurança, esse novo conceito baseado em redes neurais artificiais em pesquisas relacionadas à resposta de cultivares de cebola à adubação nitrogenada. De uma maneira geral, o trabalho descreve o êxito da utilização de novas técnicas estatísticas com ênfase em redes neurais que ajudem melhorar a produtividade da cebola para, a partir daí, permitir aplicar e difundir técnicas baseadas em inteligência computacional para fins de estudos de predição e modelagem.application/pdfporUniversidade Federal de ViçosaMestrado em Estatística Aplicada e BiometriaUFVBREstatística Aplicada e BiometriaCebolaAdubação nitrogenadaRedes neuraisIdentidade de modelosOnionNitrogen fertilizationNeural networksModel identityCNPQ::CIENCIAS AGRARIASRedes neurais, identidade de modelos e resposta da cebola à adubação nitrogenadaNeural networks, model identity and onions response to nitrogen fertilizationinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALtexto completo.pdfapplication/pdf915073https://locus.ufv.br//bitstream/123456789/4064/1/texto%20completo.pdfb935760049a0fd3e2afd0852f0a37275MD51TEXTtexto completo.pdf.txttexto completo.pdf.txtExtracted texttext/plain157381https://locus.ufv.br//bitstream/123456789/4064/2/texto%20completo.pdf.txt0870d652f8bdd5338034449374310ee8MD52THUMBNAILtexto completo.pdf.jpgtexto completo.pdf.jpgIM Thumbnailimage/jpeg3637https://locus.ufv.br//bitstream/123456789/4064/3/texto%20completo.pdf.jpg7079d3208f08e2ce5aa1fce62fa23388MD53123456789/40642016-04-09 23:18:05.123oai:locus.ufv.br:123456789/4064Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452016-04-10T02:18:05LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false |
dc.title.por.fl_str_mv |
Redes neurais, identidade de modelos e resposta da cebola à adubação nitrogenada |
dc.title.alternative.eng.fl_str_mv |
Neural networks, model identity and onions response to nitrogen fertilization |
title |
Redes neurais, identidade de modelos e resposta da cebola à adubação nitrogenada |
spellingShingle |
Redes neurais, identidade de modelos e resposta da cebola à adubação nitrogenada Rodrigues, Dirceu Zeferino Cebola Adubação nitrogenada Redes neurais Identidade de modelos Onion Nitrogen fertilization Neural networks Model identity CNPQ::CIENCIAS AGRARIAS |
title_short |
Redes neurais, identidade de modelos e resposta da cebola à adubação nitrogenada |
title_full |
Redes neurais, identidade de modelos e resposta da cebola à adubação nitrogenada |
title_fullStr |
Redes neurais, identidade de modelos e resposta da cebola à adubação nitrogenada |
title_full_unstemmed |
Redes neurais, identidade de modelos e resposta da cebola à adubação nitrogenada |
title_sort |
Redes neurais, identidade de modelos e resposta da cebola à adubação nitrogenada |
author |
Rodrigues, Dirceu Zeferino |
author_facet |
Rodrigues, Dirceu Zeferino |
author_role |
author |
dc.contributor.authorLattes.por.fl_str_mv |
http://lattes.cnpq.br/4541310431856092 |
dc.contributor.author.fl_str_mv |
Rodrigues, Dirceu Zeferino |
dc.contributor.advisor-co1.fl_str_mv |
Nascimento, Moysés |
dc.contributor.advisor-co1Lattes.fl_str_mv |
http://lattes.cnpq.br/6544887498494945 |
dc.contributor.advisor-co2.fl_str_mv |
Cecon, Paulo Roberto |
dc.contributor.advisor-co2Lattes.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4788114T5 |
dc.contributor.advisor1.fl_str_mv |
Cruz, Cosme Damião |
dc.contributor.advisor1Lattes.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4788274A6 |
dc.contributor.referee1.fl_str_mv |
Vidigal, Sanzio Mollica |
dc.contributor.referee1Lattes.fl_str_mv |
http://lattes.cnpq.br/5365238542399439 |
contributor_str_mv |
Nascimento, Moysés Cecon, Paulo Roberto Cruz, Cosme Damião Vidigal, Sanzio Mollica |
dc.subject.por.fl_str_mv |
Cebola Adubação nitrogenada Redes neurais Identidade de modelos |
topic |
Cebola Adubação nitrogenada Redes neurais Identidade de modelos Onion Nitrogen fertilization Neural networks Model identity CNPQ::CIENCIAS AGRARIAS |
dc.subject.eng.fl_str_mv |
Onion Nitrogen fertilization Neural networks Model identity |
dc.subject.cnpq.fl_str_mv |
CNPQ::CIENCIAS AGRARIAS |
description |
The study of the productivity curves compared with the amount of nitrogen absorbed by the onion crop is fundamentally important for the elaboration of a more efficient fertilization plan in technical terms as well as in economic terms. Many statistical techniques have been proposed, tested, and improved in order to help boost research in this direction. The justification for this research is the need to assess and improve new statistical techniques that help in obtaining accurate information in order to assist in decision making for improving productivity. For this case, this study aimed to use and evaluate two statistical methods with different specific objectives with respect to the evaluation of nitrogen application in the production of onion cultivars. In the first evaluation, statistical techniques based on regression models were used for adjusting curves for some nitrogen levels related to productivity, performing a survey with four onion cultivars in different locations, and then to carry out the evaluation of the grouping possibility of these statistical models using the models identity test. In this step, it was tried to estimate a curve that could represent together the fertilization response pattern in all four evaluated sites. In the second study, the goal was to verify the techniques efficiency based on neural networks. So, the proposal was to see the possibility of using safely this new concept based on artificial neural networks in research related to the onion cultivars response to nitrogen fertilization. In general, this study describes the successful use of new statistical techniques with emphasis on neural networks that help improve the onion productivity and thereafter to implement and disseminate techniques based on computational intelligence for purposes of study prediction and modeling. |
publishDate |
2013 |
dc.date.available.fl_str_mv |
2013-06-25 2015-03-26T13:32:18Z |
dc.date.issued.fl_str_mv |
2013-03-21 |
dc.date.accessioned.fl_str_mv |
2015-03-26T13:32:18Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
RODRIGUES, Dirceu Zeferino. Neural networks, model identity and onions response to nitrogen fertilization. 2013. 90 f. Dissertação (Mestrado em Estatística Aplicada e Biometria) - Universidade Federal de Viçosa, Viçosa, 2013. |
dc.identifier.uri.fl_str_mv |
http://locus.ufv.br/handle/123456789/4064 |
identifier_str_mv |
RODRIGUES, Dirceu Zeferino. Neural networks, model identity and onions response to nitrogen fertilization. 2013. 90 f. Dissertação (Mestrado em Estatística Aplicada e Biometria) - Universidade Federal de Viçosa, Viçosa, 2013. |
url |
http://locus.ufv.br/handle/123456789/4064 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Viçosa |
dc.publisher.program.fl_str_mv |
Mestrado em Estatística Aplicada e Biometria |
dc.publisher.initials.fl_str_mv |
UFV |
dc.publisher.country.fl_str_mv |
BR |
dc.publisher.department.fl_str_mv |
Estatística Aplicada e Biometria |
publisher.none.fl_str_mv |
Universidade Federal de Viçosa |
dc.source.none.fl_str_mv |
reponame:LOCUS Repositório Institucional da UFV instname:Universidade Federal de Viçosa (UFV) instacron:UFV |
instname_str |
Universidade Federal de Viçosa (UFV) |
instacron_str |
UFV |
institution |
UFV |
reponame_str |
LOCUS Repositório Institucional da UFV |
collection |
LOCUS Repositório Institucional da UFV |
bitstream.url.fl_str_mv |
https://locus.ufv.br//bitstream/123456789/4064/1/texto%20completo.pdf https://locus.ufv.br//bitstream/123456789/4064/2/texto%20completo.pdf.txt https://locus.ufv.br//bitstream/123456789/4064/3/texto%20completo.pdf.jpg |
bitstream.checksum.fl_str_mv |
b935760049a0fd3e2afd0852f0a37275 0870d652f8bdd5338034449374310ee8 7079d3208f08e2ce5aa1fce62fa23388 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV) |
repository.mail.fl_str_mv |
fabiojreis@ufv.br |
_version_ |
1801212883795705856 |