Redes neurais, identidade de modelos e resposta da cebola à adubação nitrogenada

Detalhes bibliográficos
Autor(a) principal: Rodrigues, Dirceu Zeferino
Data de Publicação: 2013
Tipo de documento: Dissertação
Idioma: por
Título da fonte: LOCUS Repositório Institucional da UFV
Texto Completo: http://locus.ufv.br/handle/123456789/4064
Resumo: The study of the productivity curves compared with the amount of nitrogen absorbed by the onion crop is fundamentally important for the elaboration of a more efficient fertilization plan in technical terms as well as in economic terms. Many statistical techniques have been proposed, tested, and improved in order to help boost research in this direction. The justification for this research is the need to assess and improve new statistical techniques that help in obtaining accurate information in order to assist in decision making for improving productivity. For this case, this study aimed to use and evaluate two statistical methods with different specific objectives with respect to the evaluation of nitrogen application in the production of onion cultivars. In the first evaluation, statistical techniques based on regression models were used for adjusting curves for some nitrogen levels related to productivity, performing a survey with four onion cultivars in different locations, and then to carry out the evaluation of the grouping possibility of these statistical models using the models identity test. In this step, it was tried to estimate a curve that could represent together the fertilization response pattern in all four evaluated sites. In the second study, the goal was to verify the techniques efficiency based on neural networks. So, the proposal was to see the possibility of using safely this new concept based on artificial neural networks in research related to the onion cultivars response to nitrogen fertilization. In general, this study describes the successful use of new statistical techniques with emphasis on neural networks that help improve the onion productivity and thereafter to implement and disseminate techniques based on computational intelligence for purposes of study prediction and modeling.
id UFV_7439269e1b42044694446322ca0bebab
oai_identifier_str oai:locus.ufv.br:123456789/4064
network_acronym_str UFV
network_name_str LOCUS Repositório Institucional da UFV
repository_id_str 2145
spelling Rodrigues, Dirceu Zeferinohttp://lattes.cnpq.br/4541310431856092Nascimento, Moyséshttp://lattes.cnpq.br/6544887498494945Cecon, Paulo Robertohttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4788114T5Cruz, Cosme Damiãohttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4788274A6Vidigal, Sanzio Mollicahttp://lattes.cnpq.br/53652385423994392015-03-26T13:32:18Z2013-06-252015-03-26T13:32:18Z2013-03-21RODRIGUES, Dirceu Zeferino. Neural networks, model identity and onions response to nitrogen fertilization. 2013. 90 f. Dissertação (Mestrado em Estatística Aplicada e Biometria) - Universidade Federal de Viçosa, Viçosa, 2013.http://locus.ufv.br/handle/123456789/4064The study of the productivity curves compared with the amount of nitrogen absorbed by the onion crop is fundamentally important for the elaboration of a more efficient fertilization plan in technical terms as well as in economic terms. Many statistical techniques have been proposed, tested, and improved in order to help boost research in this direction. The justification for this research is the need to assess and improve new statistical techniques that help in obtaining accurate information in order to assist in decision making for improving productivity. For this case, this study aimed to use and evaluate two statistical methods with different specific objectives with respect to the evaluation of nitrogen application in the production of onion cultivars. In the first evaluation, statistical techniques based on regression models were used for adjusting curves for some nitrogen levels related to productivity, performing a survey with four onion cultivars in different locations, and then to carry out the evaluation of the grouping possibility of these statistical models using the models identity test. In this step, it was tried to estimate a curve that could represent together the fertilization response pattern in all four evaluated sites. In the second study, the goal was to verify the techniques efficiency based on neural networks. So, the proposal was to see the possibility of using safely this new concept based on artificial neural networks in research related to the onion cultivars response to nitrogen fertilization. In general, this study describes the successful use of new statistical techniques with emphasis on neural networks that help improve the onion productivity and thereafter to implement and disseminate techniques based on computational intelligence for purposes of study prediction and modeling.O estudo das curvas de produtividade comparadas com a quantidade de nitrogênio absorvido pela cultura da cebola é de fundamental importância para a formulação de um plano de adubação que seja mais eficiente tanto em termos técnicos quanto econômicos. Diversas técnicas estatísticas têm sido propostas, testadas e aprimoradas com o intuito de contribuir para alavancar pesquisas nesta direção. A justificativa para este trabalho de pesquisa está na necessidade de avaliar e aprimorar novas técnicas estatísticas que ajudem na obtenção de informações precisas com a finalidade de auxiliar na tomada de decisão visando melhorar a produtividade. Para isso, este estudo teve como objetivo empregar e avaliar duas metodologias de auxílio à estatística, mas com objetivos específicos distintos com respeito à avaliação da aplicação de nitrogênio na produção dos cultivares da cebola. Na primeira avaliação, objetivou-se utilizar técnicas estatísticas baseadas em modelos de regressão e ajustar curvas para alguns níveis de doses de nitrogênio, relacionadas à produtividade, para uma pesquisa realizada com quatro cultivares em locais distintos de cebola e, em seguida, avaliar a possibilidade de agrupamento desses modelos estatísticos obtidos, utilizando o teste de identidade de modelos. Nesta etapa, procurou-se estimar uma curva que representasse, em conjunto, o padrão de resposta à adubação em todos os quatro locais avaliados. No segundo estudo, a meta era verificar a eficiência de técnicas baseadas em redes neurais. Assim, a proposta foi constatar se já é possível utilizar, com segurança, esse novo conceito baseado em redes neurais artificiais em pesquisas relacionadas à resposta de cultivares de cebola à adubação nitrogenada. De uma maneira geral, o trabalho descreve o êxito da utilização de novas técnicas estatísticas com ênfase em redes neurais que ajudem melhorar a produtividade da cebola para, a partir daí, permitir aplicar e difundir técnicas baseadas em inteligência computacional para fins de estudos de predição e modelagem.application/pdfporUniversidade Federal de ViçosaMestrado em Estatística Aplicada e BiometriaUFVBREstatística Aplicada e BiometriaCebolaAdubação nitrogenadaRedes neuraisIdentidade de modelosOnionNitrogen fertilizationNeural networksModel identityCNPQ::CIENCIAS AGRARIASRedes neurais, identidade de modelos e resposta da cebola à adubação nitrogenadaNeural networks, model identity and onions response to nitrogen fertilizationinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALtexto completo.pdfapplication/pdf915073https://locus.ufv.br//bitstream/123456789/4064/1/texto%20completo.pdfb935760049a0fd3e2afd0852f0a37275MD51TEXTtexto completo.pdf.txttexto completo.pdf.txtExtracted texttext/plain157381https://locus.ufv.br//bitstream/123456789/4064/2/texto%20completo.pdf.txt0870d652f8bdd5338034449374310ee8MD52THUMBNAILtexto completo.pdf.jpgtexto completo.pdf.jpgIM Thumbnailimage/jpeg3637https://locus.ufv.br//bitstream/123456789/4064/3/texto%20completo.pdf.jpg7079d3208f08e2ce5aa1fce62fa23388MD53123456789/40642016-04-09 23:18:05.123oai:locus.ufv.br:123456789/4064Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452016-04-10T02:18:05LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false
dc.title.por.fl_str_mv Redes neurais, identidade de modelos e resposta da cebola à adubação nitrogenada
dc.title.alternative.eng.fl_str_mv Neural networks, model identity and onions response to nitrogen fertilization
title Redes neurais, identidade de modelos e resposta da cebola à adubação nitrogenada
spellingShingle Redes neurais, identidade de modelos e resposta da cebola à adubação nitrogenada
Rodrigues, Dirceu Zeferino
Cebola
Adubação nitrogenada
Redes neurais
Identidade de modelos
Onion
Nitrogen fertilization
Neural networks
Model identity
CNPQ::CIENCIAS AGRARIAS
title_short Redes neurais, identidade de modelos e resposta da cebola à adubação nitrogenada
title_full Redes neurais, identidade de modelos e resposta da cebola à adubação nitrogenada
title_fullStr Redes neurais, identidade de modelos e resposta da cebola à adubação nitrogenada
title_full_unstemmed Redes neurais, identidade de modelos e resposta da cebola à adubação nitrogenada
title_sort Redes neurais, identidade de modelos e resposta da cebola à adubação nitrogenada
author Rodrigues, Dirceu Zeferino
author_facet Rodrigues, Dirceu Zeferino
author_role author
dc.contributor.authorLattes.por.fl_str_mv http://lattes.cnpq.br/4541310431856092
dc.contributor.author.fl_str_mv Rodrigues, Dirceu Zeferino
dc.contributor.advisor-co1.fl_str_mv Nascimento, Moysés
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/6544887498494945
dc.contributor.advisor-co2.fl_str_mv Cecon, Paulo Roberto
dc.contributor.advisor-co2Lattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4788114T5
dc.contributor.advisor1.fl_str_mv Cruz, Cosme Damião
dc.contributor.advisor1Lattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4788274A6
dc.contributor.referee1.fl_str_mv Vidigal, Sanzio Mollica
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/5365238542399439
contributor_str_mv Nascimento, Moysés
Cecon, Paulo Roberto
Cruz, Cosme Damião
Vidigal, Sanzio Mollica
dc.subject.por.fl_str_mv Cebola
Adubação nitrogenada
Redes neurais
Identidade de modelos
topic Cebola
Adubação nitrogenada
Redes neurais
Identidade de modelos
Onion
Nitrogen fertilization
Neural networks
Model identity
CNPQ::CIENCIAS AGRARIAS
dc.subject.eng.fl_str_mv Onion
Nitrogen fertilization
Neural networks
Model identity
dc.subject.cnpq.fl_str_mv CNPQ::CIENCIAS AGRARIAS
description The study of the productivity curves compared with the amount of nitrogen absorbed by the onion crop is fundamentally important for the elaboration of a more efficient fertilization plan in technical terms as well as in economic terms. Many statistical techniques have been proposed, tested, and improved in order to help boost research in this direction. The justification for this research is the need to assess and improve new statistical techniques that help in obtaining accurate information in order to assist in decision making for improving productivity. For this case, this study aimed to use and evaluate two statistical methods with different specific objectives with respect to the evaluation of nitrogen application in the production of onion cultivars. In the first evaluation, statistical techniques based on regression models were used for adjusting curves for some nitrogen levels related to productivity, performing a survey with four onion cultivars in different locations, and then to carry out the evaluation of the grouping possibility of these statistical models using the models identity test. In this step, it was tried to estimate a curve that could represent together the fertilization response pattern in all four evaluated sites. In the second study, the goal was to verify the techniques efficiency based on neural networks. So, the proposal was to see the possibility of using safely this new concept based on artificial neural networks in research related to the onion cultivars response to nitrogen fertilization. In general, this study describes the successful use of new statistical techniques with emphasis on neural networks that help improve the onion productivity and thereafter to implement and disseminate techniques based on computational intelligence for purposes of study prediction and modeling.
publishDate 2013
dc.date.available.fl_str_mv 2013-06-25
2015-03-26T13:32:18Z
dc.date.issued.fl_str_mv 2013-03-21
dc.date.accessioned.fl_str_mv 2015-03-26T13:32:18Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv RODRIGUES, Dirceu Zeferino. Neural networks, model identity and onions response to nitrogen fertilization. 2013. 90 f. Dissertação (Mestrado em Estatística Aplicada e Biometria) - Universidade Federal de Viçosa, Viçosa, 2013.
dc.identifier.uri.fl_str_mv http://locus.ufv.br/handle/123456789/4064
identifier_str_mv RODRIGUES, Dirceu Zeferino. Neural networks, model identity and onions response to nitrogen fertilization. 2013. 90 f. Dissertação (Mestrado em Estatística Aplicada e Biometria) - Universidade Federal de Viçosa, Viçosa, 2013.
url http://locus.ufv.br/handle/123456789/4064
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Viçosa
dc.publisher.program.fl_str_mv Mestrado em Estatística Aplicada e Biometria
dc.publisher.initials.fl_str_mv UFV
dc.publisher.country.fl_str_mv BR
dc.publisher.department.fl_str_mv Estatística Aplicada e Biometria
publisher.none.fl_str_mv Universidade Federal de Viçosa
dc.source.none.fl_str_mv reponame:LOCUS Repositório Institucional da UFV
instname:Universidade Federal de Viçosa (UFV)
instacron:UFV
instname_str Universidade Federal de Viçosa (UFV)
instacron_str UFV
institution UFV
reponame_str LOCUS Repositório Institucional da UFV
collection LOCUS Repositório Institucional da UFV
bitstream.url.fl_str_mv https://locus.ufv.br//bitstream/123456789/4064/1/texto%20completo.pdf
https://locus.ufv.br//bitstream/123456789/4064/2/texto%20completo.pdf.txt
https://locus.ufv.br//bitstream/123456789/4064/3/texto%20completo.pdf.jpg
bitstream.checksum.fl_str_mv b935760049a0fd3e2afd0852f0a37275
0870d652f8bdd5338034449374310ee8
7079d3208f08e2ce5aa1fce62fa23388
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)
repository.mail.fl_str_mv fabiojreis@ufv.br
_version_ 1801212883795705856