Fruit development, growth, and stored reserves in macauba palm (Acrocomia aculeata), an alternative bioenergy crop
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | LOCUS Repositório Institucional da UFV |
Texto Completo: | http://dx.doi.org/10.1007/s00425-016-2558-7 http://www.locus.ufv.br/handle/123456789/19625 |
Resumo: | Main conclusion Macauba palm fruiting is supra-annual, and the fruit growth follows a double sigmoidal trend. The prevailing compound in the mesocarp differs as the fruit ages, oil being the major storage compound. Acrocomia aculeata, macauba palm, is a conspicuous species in the tropical Americas. Because the species is highly productive in oil-rich fruits, it is the subject of domestication as an alternative vegetable oil crop, especially as a bioenergy feedstock. This detailed study first presents the macauba fruit growth and development patterns, morphological changes and accumulation of organic compounds. Fruits were monitored weekly in a natural population. The fruiting was supra-annual, and the fruit growth curve followed a double sigmoidal trend with four stages (S): SI—slow growth and negligible differentiation of the fruit inner parts; SII—first growth spurt and visible, but not complete, differentiation of the inner parts; SIII—growth slowed down and all structures attained differentiation; and SIV—second growth spurt and fruit maturation. In SII, the exocarp and endocarp were the main contributors to fruit growth, whereas the mesocarp and endosperm were responsible for most of the weight gain during SIV. In comparison with starch and oil, soluble sugars did not accumulate in the mesocarp. However, starch was transitory and fueled the oil synthesis. The protective layers, the exocarp and endocarp, fulfilling their ecological roles, were the first to reach maturity, followed by the storage tissues, the mesocarp, and endosperm. The amount and nature of organic compounds in the mesocarp varied with the fruit development and growth stages, and oil was the main and final storage material. The description of macauba fruit’s transformations and their temporal order may be of importance for future ecological and agronomical references. |
id |
UFV_780e0040ab7794b9584f4ca1310d8e81 |
---|---|
oai_identifier_str |
oai:locus.ufv.br:123456789/19625 |
network_acronym_str |
UFV |
network_name_str |
LOCUS Repositório Institucional da UFV |
repository_id_str |
2145 |
spelling |
Montoya, Sebastián GiraldoMotoike, Sérgio YoshimitsuKuki, Kacilda NaomiCouto, Adriano Donato2018-05-16T14:33:14Z2018-05-16T14:33:14Z2016-06-161432-2048http://dx.doi.org/10.1007/s00425-016-2558-7http://www.locus.ufv.br/handle/123456789/19625Main conclusion Macauba palm fruiting is supra-annual, and the fruit growth follows a double sigmoidal trend. The prevailing compound in the mesocarp differs as the fruit ages, oil being the major storage compound. Acrocomia aculeata, macauba palm, is a conspicuous species in the tropical Americas. Because the species is highly productive in oil-rich fruits, it is the subject of domestication as an alternative vegetable oil crop, especially as a bioenergy feedstock. This detailed study first presents the macauba fruit growth and development patterns, morphological changes and accumulation of organic compounds. Fruits were monitored weekly in a natural population. The fruiting was supra-annual, and the fruit growth curve followed a double sigmoidal trend with four stages (S): SI—slow growth and negligible differentiation of the fruit inner parts; SII—first growth spurt and visible, but not complete, differentiation of the inner parts; SIII—growth slowed down and all structures attained differentiation; and SIV—second growth spurt and fruit maturation. In SII, the exocarp and endocarp were the main contributors to fruit growth, whereas the mesocarp and endosperm were responsible for most of the weight gain during SIV. In comparison with starch and oil, soluble sugars did not accumulate in the mesocarp. However, starch was transitory and fueled the oil synthesis. The protective layers, the exocarp and endocarp, fulfilling their ecological roles, were the first to reach maturity, followed by the storage tissues, the mesocarp, and endosperm. The amount and nature of organic compounds in the mesocarp varied with the fruit development and growth stages, and oil was the main and final storage material. The description of macauba fruit’s transformations and their temporal order may be of importance for future ecological and agronomical references.engPlantaVolume 244, Issue 4, p 927–938, October 2016Springer Berlin Heidelberginfo:eu-repo/semantics/openAccessBiomassDomesticationEcologyMacaw palmNew cropPhenologyFruit development, growth, and stored reserves in macauba palm (Acrocomia aculeata), an alternative bioenergy cropinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALartigo.pdfartigo.pdfTexto completoapplication/pdf1281123https://locus.ufv.br//bitstream/123456789/19625/1/artigo.pdf5828401a6e61f49affb277abca6eb110MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://locus.ufv.br//bitstream/123456789/19625/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILartigo.pdf.jpgartigo.pdf.jpgIM Thumbnailimage/jpeg5227https://locus.ufv.br//bitstream/123456789/19625/3/artigo.pdf.jpga5987cdaf87ceae90496a0ba8d6ba4f7MD53123456789/196252018-05-16 23:00:48.356oai:locus.ufv.br:123456789/19625Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452018-05-17T02:00:48LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false |
dc.title.en.fl_str_mv |
Fruit development, growth, and stored reserves in macauba palm (Acrocomia aculeata), an alternative bioenergy crop |
title |
Fruit development, growth, and stored reserves in macauba palm (Acrocomia aculeata), an alternative bioenergy crop |
spellingShingle |
Fruit development, growth, and stored reserves in macauba palm (Acrocomia aculeata), an alternative bioenergy crop Montoya, Sebastián Giraldo Biomass Domestication Ecology Macaw palm New crop Phenology |
title_short |
Fruit development, growth, and stored reserves in macauba palm (Acrocomia aculeata), an alternative bioenergy crop |
title_full |
Fruit development, growth, and stored reserves in macauba palm (Acrocomia aculeata), an alternative bioenergy crop |
title_fullStr |
Fruit development, growth, and stored reserves in macauba palm (Acrocomia aculeata), an alternative bioenergy crop |
title_full_unstemmed |
Fruit development, growth, and stored reserves in macauba palm (Acrocomia aculeata), an alternative bioenergy crop |
title_sort |
Fruit development, growth, and stored reserves in macauba palm (Acrocomia aculeata), an alternative bioenergy crop |
author |
Montoya, Sebastián Giraldo |
author_facet |
Montoya, Sebastián Giraldo Motoike, Sérgio Yoshimitsu Kuki, Kacilda Naomi Couto, Adriano Donato |
author_role |
author |
author2 |
Motoike, Sérgio Yoshimitsu Kuki, Kacilda Naomi Couto, Adriano Donato |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Montoya, Sebastián Giraldo Motoike, Sérgio Yoshimitsu Kuki, Kacilda Naomi Couto, Adriano Donato |
dc.subject.pt-BR.fl_str_mv |
Biomass Domestication Ecology Macaw palm New crop Phenology |
topic |
Biomass Domestication Ecology Macaw palm New crop Phenology |
description |
Main conclusion Macauba palm fruiting is supra-annual, and the fruit growth follows a double sigmoidal trend. The prevailing compound in the mesocarp differs as the fruit ages, oil being the major storage compound. Acrocomia aculeata, macauba palm, is a conspicuous species in the tropical Americas. Because the species is highly productive in oil-rich fruits, it is the subject of domestication as an alternative vegetable oil crop, especially as a bioenergy feedstock. This detailed study first presents the macauba fruit growth and development patterns, morphological changes and accumulation of organic compounds. Fruits were monitored weekly in a natural population. The fruiting was supra-annual, and the fruit growth curve followed a double sigmoidal trend with four stages (S): SI—slow growth and negligible differentiation of the fruit inner parts; SII—first growth spurt and visible, but not complete, differentiation of the inner parts; SIII—growth slowed down and all structures attained differentiation; and SIV—second growth spurt and fruit maturation. In SII, the exocarp and endocarp were the main contributors to fruit growth, whereas the mesocarp and endosperm were responsible for most of the weight gain during SIV. In comparison with starch and oil, soluble sugars did not accumulate in the mesocarp. However, starch was transitory and fueled the oil synthesis. The protective layers, the exocarp and endocarp, fulfilling their ecological roles, were the first to reach maturity, followed by the storage tissues, the mesocarp, and endosperm. The amount and nature of organic compounds in the mesocarp varied with the fruit development and growth stages, and oil was the main and final storage material. The description of macauba fruit’s transformations and their temporal order may be of importance for future ecological and agronomical references. |
publishDate |
2016 |
dc.date.issued.fl_str_mv |
2016-06-16 |
dc.date.accessioned.fl_str_mv |
2018-05-16T14:33:14Z |
dc.date.available.fl_str_mv |
2018-05-16T14:33:14Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1007/s00425-016-2558-7 http://www.locus.ufv.br/handle/123456789/19625 |
dc.identifier.issn.none.fl_str_mv |
1432-2048 |
identifier_str_mv |
1432-2048 |
url |
http://dx.doi.org/10.1007/s00425-016-2558-7 http://www.locus.ufv.br/handle/123456789/19625 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofseries.pt-BR.fl_str_mv |
Volume 244, Issue 4, p 927–938, October 2016 |
dc.rights.driver.fl_str_mv |
Springer Berlin Heidelberg info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Springer Berlin Heidelberg |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Planta |
publisher.none.fl_str_mv |
Planta |
dc.source.none.fl_str_mv |
reponame:LOCUS Repositório Institucional da UFV instname:Universidade Federal de Viçosa (UFV) instacron:UFV |
instname_str |
Universidade Federal de Viçosa (UFV) |
instacron_str |
UFV |
institution |
UFV |
reponame_str |
LOCUS Repositório Institucional da UFV |
collection |
LOCUS Repositório Institucional da UFV |
bitstream.url.fl_str_mv |
https://locus.ufv.br//bitstream/123456789/19625/1/artigo.pdf https://locus.ufv.br//bitstream/123456789/19625/2/license.txt https://locus.ufv.br//bitstream/123456789/19625/3/artigo.pdf.jpg |
bitstream.checksum.fl_str_mv |
5828401a6e61f49affb277abca6eb110 8a4605be74aa9ea9d79846c1fba20a33 a5987cdaf87ceae90496a0ba8d6ba4f7 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV) |
repository.mail.fl_str_mv |
fabiojreis@ufv.br |
_version_ |
1801212900870717440 |