Semigrupos numéricos não associados a curvas algébricas

Detalhes bibliográficos
Autor(a) principal: Mazzini, Sarah Faria Monteiro
Data de Publicação: 2017
Tipo de documento: Dissertação
Idioma: por
Título da fonte: LOCUS Repositório Institucional da UFV
Texto Completo: http://www.locus.ufv.br/handle/123456789/11430
Resumo: Neste trabalho estudamos um caso particular de semigrupos numéricos: os semigrupos de Weierstrass. Com o teorema das lacunas de Weierstrass, provado em meados de 1860, foi possível concluir que a todo ponto de uma curva algébrica projetiva, não singular, definida sobre um corpo algebricamente fechado, é associado um semigrupo numérico. Em 1893, o matemático Hurwitz fez a seguinte pergunta: dado um semigrupo numérico H, existe uma curva tal que H está associado a um ponto dessa curva? Se tal semigrupo existir, este será chamado semigrupo de Weierstrass. Em 1980, Buchweitz encontrou o primeiro semigrupo que não era de Weierstrass, respondendo a pergunta de Hurwitz. Em 1993, o matemático Stöhr, utilizando um trabalho de Torres, apresentou o primeiro semigrupo simétrico que não era de Weierstrass. O objetivo deste trabalho é apresentar esses resultados.
id UFV_7c4f7fb7f7366e0efb8f14c2fd253597
oai_identifier_str oai:locus.ufv.br:123456789/11430
network_acronym_str UFV
network_name_str LOCUS Repositório Institucional da UFV
repository_id_str 2145
spelling Mazzini, Sarah Faria Monteirohttp://lattes.cnpq.br/6968972660737701Abrantes, Lia Feital Fusaro2017-07-24T13:08:21Z2017-07-24T13:08:21Z2017-02-17MAZZINI, Sarah Faria Monteiro. Semigrupos numéricos não associados a curvas algébricas. 2017. 89f. Dissertação (Mestrado em Matemática) - Universidade Federal de Viçosa, Viçosa. 2017.http://www.locus.ufv.br/handle/123456789/11430Neste trabalho estudamos um caso particular de semigrupos numéricos: os semigrupos de Weierstrass. Com o teorema das lacunas de Weierstrass, provado em meados de 1860, foi possível concluir que a todo ponto de uma curva algébrica projetiva, não singular, definida sobre um corpo algebricamente fechado, é associado um semigrupo numérico. Em 1893, o matemático Hurwitz fez a seguinte pergunta: dado um semigrupo numérico H, existe uma curva tal que H está associado a um ponto dessa curva? Se tal semigrupo existir, este será chamado semigrupo de Weierstrass. Em 1980, Buchweitz encontrou o primeiro semigrupo que não era de Weierstrass, respondendo a pergunta de Hurwitz. Em 1993, o matemático Stöhr, utilizando um trabalho de Torres, apresentou o primeiro semigrupo simétrico que não era de Weierstrass. O objetivo deste trabalho é apresentar esses resultados.In this paper we study a particular case of numerical semigroups: the Weierstrass semigroups. With the Weierstrass gap theorem, proved in the mid-1860s, it was possible to conclude that at every point of a non-singular projective algebraic curve, defined on an algebraically closed field, we can associate a numerical semigroup. In 1893 the mathematician Hurwitz asked the following question: given a numerical semigroup H, is there a curve such that H is associated with a point on this curve? If such a semigroup exists, it will be called Weierstrass semigroup. In 1980 Buchweitz found the first non-Weierstrass semigroup, answering Hurwitz’s question. In 1993, the mathematician Stöhr, using results of Torres, presented the first symmetric semigroup that was non- Weierstrass.Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorporUniversidade Federal de ViçosaTeoria dos gruposSemigruposCurvas algébricasGeometria AlgébricaSemigrupos numéricos não associados a curvas algébricasNumerical semigroups not associated with algebraic curvesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisUniversidade Federal de ViçosaDepartamento de MatemáticaMestre em MatemáticaViçosa - MG2017-02-17Mestradoinfo:eu-repo/semantics/openAccessreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALtexto completo.pdftexto completo.pdftexto completoapplication/pdf692892https://locus.ufv.br//bitstream/123456789/11430/1/texto%20completo.pdfeba8d799df2a3f11decb34542806d2c0MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://locus.ufv.br//bitstream/123456789/11430/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILtexto completo.pdf.jpgtexto completo.pdf.jpgIM Thumbnailimage/jpeg3640https://locus.ufv.br//bitstream/123456789/11430/3/texto%20completo.pdf.jpgc61ff212f1e942aa61c06d29a8d1db97MD53123456789/114302022-06-28 14:37:55.826oai:locus.ufv.br:123456789/11430Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452022-06-28T17:37:55LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false
dc.title.pt-BR.fl_str_mv Semigrupos numéricos não associados a curvas algébricas
dc.title.en.fl_str_mv Numerical semigroups not associated with algebraic curves
title Semigrupos numéricos não associados a curvas algébricas
spellingShingle Semigrupos numéricos não associados a curvas algébricas
Mazzini, Sarah Faria Monteiro
Teoria dos grupos
Semigrupos
Curvas algébricas
Geometria Algébrica
title_short Semigrupos numéricos não associados a curvas algébricas
title_full Semigrupos numéricos não associados a curvas algébricas
title_fullStr Semigrupos numéricos não associados a curvas algébricas
title_full_unstemmed Semigrupos numéricos não associados a curvas algébricas
title_sort Semigrupos numéricos não associados a curvas algébricas
author Mazzini, Sarah Faria Monteiro
author_facet Mazzini, Sarah Faria Monteiro
author_role author
dc.contributor.authorLattes.pt-BR.fl_str_mv http://lattes.cnpq.br/6968972660737701
dc.contributor.author.fl_str_mv Mazzini, Sarah Faria Monteiro
dc.contributor.advisor1.fl_str_mv Abrantes, Lia Feital Fusaro
contributor_str_mv Abrantes, Lia Feital Fusaro
dc.subject.pt-BR.fl_str_mv Teoria dos grupos
Semigrupos
Curvas algébricas
topic Teoria dos grupos
Semigrupos
Curvas algébricas
Geometria Algébrica
dc.subject.cnpq.fl_str_mv Geometria Algébrica
description Neste trabalho estudamos um caso particular de semigrupos numéricos: os semigrupos de Weierstrass. Com o teorema das lacunas de Weierstrass, provado em meados de 1860, foi possível concluir que a todo ponto de uma curva algébrica projetiva, não singular, definida sobre um corpo algebricamente fechado, é associado um semigrupo numérico. Em 1893, o matemático Hurwitz fez a seguinte pergunta: dado um semigrupo numérico H, existe uma curva tal que H está associado a um ponto dessa curva? Se tal semigrupo existir, este será chamado semigrupo de Weierstrass. Em 1980, Buchweitz encontrou o primeiro semigrupo que não era de Weierstrass, respondendo a pergunta de Hurwitz. Em 1993, o matemático Stöhr, utilizando um trabalho de Torres, apresentou o primeiro semigrupo simétrico que não era de Weierstrass. O objetivo deste trabalho é apresentar esses resultados.
publishDate 2017
dc.date.accessioned.fl_str_mv 2017-07-24T13:08:21Z
dc.date.available.fl_str_mv 2017-07-24T13:08:21Z
dc.date.issued.fl_str_mv 2017-02-17
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv MAZZINI, Sarah Faria Monteiro. Semigrupos numéricos não associados a curvas algébricas. 2017. 89f. Dissertação (Mestrado em Matemática) - Universidade Federal de Viçosa, Viçosa. 2017.
dc.identifier.uri.fl_str_mv http://www.locus.ufv.br/handle/123456789/11430
identifier_str_mv MAZZINI, Sarah Faria Monteiro. Semigrupos numéricos não associados a curvas algébricas. 2017. 89f. Dissertação (Mestrado em Matemática) - Universidade Federal de Viçosa, Viçosa. 2017.
url http://www.locus.ufv.br/handle/123456789/11430
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Viçosa
publisher.none.fl_str_mv Universidade Federal de Viçosa
dc.source.none.fl_str_mv reponame:LOCUS Repositório Institucional da UFV
instname:Universidade Federal de Viçosa (UFV)
instacron:UFV
instname_str Universidade Federal de Viçosa (UFV)
instacron_str UFV
institution UFV
reponame_str LOCUS Repositório Institucional da UFV
collection LOCUS Repositório Institucional da UFV
bitstream.url.fl_str_mv https://locus.ufv.br//bitstream/123456789/11430/1/texto%20completo.pdf
https://locus.ufv.br//bitstream/123456789/11430/2/license.txt
https://locus.ufv.br//bitstream/123456789/11430/3/texto%20completo.pdf.jpg
bitstream.checksum.fl_str_mv eba8d799df2a3f11decb34542806d2c0
8a4605be74aa9ea9d79846c1fba20a33
c61ff212f1e942aa61c06d29a8d1db97
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)
repository.mail.fl_str_mv fabiojreis@ufv.br
_version_ 1801212892596404224