GmNAC30 and GmNAC81 integrate the endoplasmic reticulum stress- and osmotic stress-induced cell death responses through a vacuolar processing enzyme

Detalhes bibliográficos
Autor(a) principal: Mendes, Giselle C.
Data de Publicação: 2013
Outros Autores: Reis, Pedro A. B., Calil, Iara P., Carvalho, Humberto H., Aragão, Francisco J. L., Fontes, Elizabeth P. B.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: LOCUS Repositório Institucional da UFV
Texto Completo: https://doi.org/10.1073/pnas.1311729110
http://www.locus.ufv.br/handle/123456789/14034
Resumo: Prolonged endoplasmic reticulum and osmotic stress synergistically activate the stress-induced N-rich protein-mediated signaling that transduces a cell death signal by inducing GmNAC81 (GmNAC6) in soybean. To identify novel regulators of the stress-induced programmed cell death (PCD) response, we screened a two-hybrid library for partners of GmNAC81. We discovered another member of the NAC (NAM-ATAF1,2-CUC2) family, GmNAC30, which binds to GmNAC81 in the nucleus of plant cells to coordinately regulate common target promoters that harbor the core cis-regulatory element TGTG[TGC]. We found that GmNAC81 and GmNAC30 can function either as transcriptional repressors or activators and cooperate to enhance the transcriptional regulation of common target promoters, suggesting that heterodimerization may be required for the full regulation of gene expression. Accordingly, GmNAC81 and GmNAC30 display overlapping expression profiles in response to multiple environmental and developmental stimuli. Consistent with a role in PCD, GmNAC81 and GmNAC30 bind in vivo to and transactivate hydrolytic enzyme promoters in soybean protoplasts. A GmNAC81/GmNAC30 binding site is located in the promoter of the caspase-1–like vacuolar processing enzyme (VPE) gene, which is involved in PCD in plants. We demonstrated that the expression of GmNAC81 and GmNAC30 fully transactivates the VPE gene in soybean protoplasts and that this transactivation was associated with an increase in caspase-1–like activity. Collectively, our results indicate that the stress-induced GmNAC30 cooperates with GmNAC81 to activate PCD through the induction of the cell death executioner VPE.
id UFV_82773813176e3eafbff2c27412530e00
oai_identifier_str oai:locus.ufv.br:123456789/14034
network_acronym_str UFV
network_name_str LOCUS Repositório Institucional da UFV
repository_id_str 2145
spelling Mendes, Giselle C.Reis, Pedro A. B.Calil, Iara P.Carvalho, Humberto H.Aragão, Francisco J. L.Fontes, Elizabeth P. B.2017-11-30T09:26:36Z2017-11-30T09:26:36Z2013-09-3010916490https://doi.org/10.1073/pnas.1311729110http://www.locus.ufv.br/handle/123456789/14034Prolonged endoplasmic reticulum and osmotic stress synergistically activate the stress-induced N-rich protein-mediated signaling that transduces a cell death signal by inducing GmNAC81 (GmNAC6) in soybean. To identify novel regulators of the stress-induced programmed cell death (PCD) response, we screened a two-hybrid library for partners of GmNAC81. We discovered another member of the NAC (NAM-ATAF1,2-CUC2) family, GmNAC30, which binds to GmNAC81 in the nucleus of plant cells to coordinately regulate common target promoters that harbor the core cis-regulatory element TGTG[TGC]. We found that GmNAC81 and GmNAC30 can function either as transcriptional repressors or activators and cooperate to enhance the transcriptional regulation of common target promoters, suggesting that heterodimerization may be required for the full regulation of gene expression. Accordingly, GmNAC81 and GmNAC30 display overlapping expression profiles in response to multiple environmental and developmental stimuli. Consistent with a role in PCD, GmNAC81 and GmNAC30 bind in vivo to and transactivate hydrolytic enzyme promoters in soybean protoplasts. A GmNAC81/GmNAC30 binding site is located in the promoter of the caspase-1–like vacuolar processing enzyme (VPE) gene, which is involved in PCD in plants. We demonstrated that the expression of GmNAC81 and GmNAC30 fully transactivates the VPE gene in soybean protoplasts and that this transactivation was associated with an increase in caspase-1–like activity. Collectively, our results indicate that the stress-induced GmNAC30 cooperates with GmNAC81 to activate PCD through the induction of the cell death executioner VPE.engPNASvol. 110, n. 48, p. 19627–19632, November 2013NAC transcriptional factorsCell death signalingAbiotic stressesER stressGmNAC30 and GmNAC81 integrate the endoplasmic reticulum stress- and osmotic stress-induced cell death responses through a vacuolar processing enzymeinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfinfo:eu-repo/semantics/openAccessreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALPNAS-2013-Mendes-19627-32.pdfPNAS-2013-Mendes-19627-32.pdftexto completoapplication/pdf958707https://locus.ufv.br//bitstream/123456789/14034/1/PNAS-2013-Mendes-19627-32.pdfb264b325d30370052623a490e0ca4f0dMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://locus.ufv.br//bitstream/123456789/14034/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILPNAS-2013-Mendes-19627-32.pdf.jpgPNAS-2013-Mendes-19627-32.pdf.jpgIM Thumbnailimage/jpeg7683https://locus.ufv.br//bitstream/123456789/14034/3/PNAS-2013-Mendes-19627-32.pdf.jpg251507753cadd9c0acd4310934b5ed59MD53123456789/140342017-11-30 22:00:49.617oai:locus.ufv.br:123456789/14034Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452017-12-01T01:00:49LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false
dc.title.en.fl_str_mv GmNAC30 and GmNAC81 integrate the endoplasmic reticulum stress- and osmotic stress-induced cell death responses through a vacuolar processing enzyme
title GmNAC30 and GmNAC81 integrate the endoplasmic reticulum stress- and osmotic stress-induced cell death responses through a vacuolar processing enzyme
spellingShingle GmNAC30 and GmNAC81 integrate the endoplasmic reticulum stress- and osmotic stress-induced cell death responses through a vacuolar processing enzyme
Mendes, Giselle C.
NAC transcriptional factors
Cell death signaling
Abiotic stresses
ER stress
title_short GmNAC30 and GmNAC81 integrate the endoplasmic reticulum stress- and osmotic stress-induced cell death responses through a vacuolar processing enzyme
title_full GmNAC30 and GmNAC81 integrate the endoplasmic reticulum stress- and osmotic stress-induced cell death responses through a vacuolar processing enzyme
title_fullStr GmNAC30 and GmNAC81 integrate the endoplasmic reticulum stress- and osmotic stress-induced cell death responses through a vacuolar processing enzyme
title_full_unstemmed GmNAC30 and GmNAC81 integrate the endoplasmic reticulum stress- and osmotic stress-induced cell death responses through a vacuolar processing enzyme
title_sort GmNAC30 and GmNAC81 integrate the endoplasmic reticulum stress- and osmotic stress-induced cell death responses through a vacuolar processing enzyme
author Mendes, Giselle C.
author_facet Mendes, Giselle C.
Reis, Pedro A. B.
Calil, Iara P.
Carvalho, Humberto H.
Aragão, Francisco J. L.
Fontes, Elizabeth P. B.
author_role author
author2 Reis, Pedro A. B.
Calil, Iara P.
Carvalho, Humberto H.
Aragão, Francisco J. L.
Fontes, Elizabeth P. B.
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Mendes, Giselle C.
Reis, Pedro A. B.
Calil, Iara P.
Carvalho, Humberto H.
Aragão, Francisco J. L.
Fontes, Elizabeth P. B.
dc.subject.pt-BR.fl_str_mv NAC transcriptional factors
Cell death signaling
Abiotic stresses
ER stress
topic NAC transcriptional factors
Cell death signaling
Abiotic stresses
ER stress
description Prolonged endoplasmic reticulum and osmotic stress synergistically activate the stress-induced N-rich protein-mediated signaling that transduces a cell death signal by inducing GmNAC81 (GmNAC6) in soybean. To identify novel regulators of the stress-induced programmed cell death (PCD) response, we screened a two-hybrid library for partners of GmNAC81. We discovered another member of the NAC (NAM-ATAF1,2-CUC2) family, GmNAC30, which binds to GmNAC81 in the nucleus of plant cells to coordinately regulate common target promoters that harbor the core cis-regulatory element TGTG[TGC]. We found that GmNAC81 and GmNAC30 can function either as transcriptional repressors or activators and cooperate to enhance the transcriptional regulation of common target promoters, suggesting that heterodimerization may be required for the full regulation of gene expression. Accordingly, GmNAC81 and GmNAC30 display overlapping expression profiles in response to multiple environmental and developmental stimuli. Consistent with a role in PCD, GmNAC81 and GmNAC30 bind in vivo to and transactivate hydrolytic enzyme promoters in soybean protoplasts. A GmNAC81/GmNAC30 binding site is located in the promoter of the caspase-1–like vacuolar processing enzyme (VPE) gene, which is involved in PCD in plants. We demonstrated that the expression of GmNAC81 and GmNAC30 fully transactivates the VPE gene in soybean protoplasts and that this transactivation was associated with an increase in caspase-1–like activity. Collectively, our results indicate that the stress-induced GmNAC30 cooperates with GmNAC81 to activate PCD through the induction of the cell death executioner VPE.
publishDate 2013
dc.date.issued.fl_str_mv 2013-09-30
dc.date.accessioned.fl_str_mv 2017-11-30T09:26:36Z
dc.date.available.fl_str_mv 2017-11-30T09:26:36Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://doi.org/10.1073/pnas.1311729110
http://www.locus.ufv.br/handle/123456789/14034
dc.identifier.issn.none.fl_str_mv 10916490
identifier_str_mv 10916490
url https://doi.org/10.1073/pnas.1311729110
http://www.locus.ufv.br/handle/123456789/14034
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartofseries.pt-BR.fl_str_mv vol. 110, n. 48, p. 19627–19632, November 2013
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv PNAS
publisher.none.fl_str_mv PNAS
dc.source.none.fl_str_mv reponame:LOCUS Repositório Institucional da UFV
instname:Universidade Federal de Viçosa (UFV)
instacron:UFV
instname_str Universidade Federal de Viçosa (UFV)
instacron_str UFV
institution UFV
reponame_str LOCUS Repositório Institucional da UFV
collection LOCUS Repositório Institucional da UFV
bitstream.url.fl_str_mv https://locus.ufv.br//bitstream/123456789/14034/1/PNAS-2013-Mendes-19627-32.pdf
https://locus.ufv.br//bitstream/123456789/14034/2/license.txt
https://locus.ufv.br//bitstream/123456789/14034/3/PNAS-2013-Mendes-19627-32.pdf.jpg
bitstream.checksum.fl_str_mv b264b325d30370052623a490e0ca4f0d
8a4605be74aa9ea9d79846c1fba20a33
251507753cadd9c0acd4310934b5ed59
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)
repository.mail.fl_str_mv fabiojreis@ufv.br
_version_ 1801213118616961024