Effects of gibberellic acid on Tifton 85 bermudagrass (Cynodon spp.) in constructed wetland systems
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | LOCUS Repositório Institucional da UFV |
Texto Completo: | https://doi.org/10.1371/journal.pone.0206378 http://www.locus.ufv.br/handle/123456789/22814 |
Resumo: | This study aimed to evaluate 1) the influence of gibberellic acid (GA3) in the development of Tifton 85 bermudagrass grown in constructed wetland systems (CWs) and 2) the plant's capacity to remove nutrients and sodium from synthetic municipal wastewater (SMW). The experiment was carried out in Viçosa, Minas Gerais, Brazil, and consisted of foliar applications of GA3 set in randomized blocks design, with four replicates and 6 treatments as following: NC (control with plants); 0 μM GA3; N1: 5 μM GA3; N2: 25 μM GA3; N3: 50 and N4: 100 μM GA3 per CWs, NC* (control with no plants): 0 μM GA3. The study was conducted over two crop cycles in the spring 2016. The parameters used to evaluate the performance of the Tifton 85 bermudagrass were its plant height, productivity, chlorophyll measurement, number of internodes, nutrients and Na removals. Chemical analyses of the effluents were conducted. In response to the application of GA3, the increase in height of Tifton 85 bermudagrass in the first crop cycle was higher than the increase in height in the second crop cycle. The decrease in plant growth in response to GA3 in the second crop cycle may be linked to the age of the plant tissue and climatic conditions. The greater growth of the plants cultivated in the CWs allows a more efficient removal of pollutants, using simple management and low cost. The results suggest that applying 50 μM of GA3 to the development of Tifton 85 bermudagrass provides higher dry matter yield and removal of nitrogen, phosphorus, and sodium for the first crop cycle in CWs. However, in the second crop cycle, the application of GA3 had no effect on dry matter production and nutrient removal by Tifton 85 bermudagrass in CWs. |
id |
UFV_87ccea3104100beb274705dd37fca796 |
---|---|
oai_identifier_str |
oai:locus.ufv.br:123456789/22814 |
network_acronym_str |
UFV |
network_name_str |
LOCUS Repositório Institucional da UFV |
repository_id_str |
2145 |
spelling |
Araújo, Edcássio DiasBorges, Alisson CarraroDias, Neriamara MartinsRibeiro, Dimas Mendes2018-12-17T13:07:24Z2018-12-17T13:07:24Z2018-10-261932-6203https://doi.org/10.1371/journal.pone.0206378http://www.locus.ufv.br/handle/123456789/22814This study aimed to evaluate 1) the influence of gibberellic acid (GA3) in the development of Tifton 85 bermudagrass grown in constructed wetland systems (CWs) and 2) the plant's capacity to remove nutrients and sodium from synthetic municipal wastewater (SMW). The experiment was carried out in Viçosa, Minas Gerais, Brazil, and consisted of foliar applications of GA3 set in randomized blocks design, with four replicates and 6 treatments as following: NC (control with plants); 0 μM GA3; N1: 5 μM GA3; N2: 25 μM GA3; N3: 50 and N4: 100 μM GA3 per CWs, NC* (control with no plants): 0 μM GA3. The study was conducted over two crop cycles in the spring 2016. The parameters used to evaluate the performance of the Tifton 85 bermudagrass were its plant height, productivity, chlorophyll measurement, number of internodes, nutrients and Na removals. Chemical analyses of the effluents were conducted. In response to the application of GA3, the increase in height of Tifton 85 bermudagrass in the first crop cycle was higher than the increase in height in the second crop cycle. The decrease in plant growth in response to GA3 in the second crop cycle may be linked to the age of the plant tissue and climatic conditions. The greater growth of the plants cultivated in the CWs allows a more efficient removal of pollutants, using simple management and low cost. The results suggest that applying 50 μM of GA3 to the development of Tifton 85 bermudagrass provides higher dry matter yield and removal of nitrogen, phosphorus, and sodium for the first crop cycle in CWs. However, in the second crop cycle, the application of GA3 had no effect on dry matter production and nutrient removal by Tifton 85 bermudagrass in CWs.engPlos Onev. 13, n. 10, p. 1- 26, out. 2018Gibberellic acidTifton 85 grassWetland systemsEffects of gibberellic acid on Tifton 85 bermudagrass (Cynodon spp.) in constructed wetland systemsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfinfo:eu-repo/semantics/openAccessreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALartigo.pdfartigo.pdfartigoapplication/pdf4466984https://locus.ufv.br//bitstream/123456789/22814/1/artigo.pdf4b83e741870258482349663d848e1ff1MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://locus.ufv.br//bitstream/123456789/22814/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52123456789/228142018-12-17 11:07:41.088oai:locus.ufv.br:123456789/22814Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452018-12-17T14:07:41LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false |
dc.title.en.fl_str_mv |
Effects of gibberellic acid on Tifton 85 bermudagrass (Cynodon spp.) in constructed wetland systems |
title |
Effects of gibberellic acid on Tifton 85 bermudagrass (Cynodon spp.) in constructed wetland systems |
spellingShingle |
Effects of gibberellic acid on Tifton 85 bermudagrass (Cynodon spp.) in constructed wetland systems Araújo, Edcássio Dias Gibberellic acid Tifton 85 grass Wetland systems |
title_short |
Effects of gibberellic acid on Tifton 85 bermudagrass (Cynodon spp.) in constructed wetland systems |
title_full |
Effects of gibberellic acid on Tifton 85 bermudagrass (Cynodon spp.) in constructed wetland systems |
title_fullStr |
Effects of gibberellic acid on Tifton 85 bermudagrass (Cynodon spp.) in constructed wetland systems |
title_full_unstemmed |
Effects of gibberellic acid on Tifton 85 bermudagrass (Cynodon spp.) in constructed wetland systems |
title_sort |
Effects of gibberellic acid on Tifton 85 bermudagrass (Cynodon spp.) in constructed wetland systems |
author |
Araújo, Edcássio Dias |
author_facet |
Araújo, Edcássio Dias Borges, Alisson Carraro Dias, Neriamara Martins Ribeiro, Dimas Mendes |
author_role |
author |
author2 |
Borges, Alisson Carraro Dias, Neriamara Martins Ribeiro, Dimas Mendes |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Araújo, Edcássio Dias Borges, Alisson Carraro Dias, Neriamara Martins Ribeiro, Dimas Mendes |
dc.subject.pt-BR.fl_str_mv |
Gibberellic acid Tifton 85 grass Wetland systems |
topic |
Gibberellic acid Tifton 85 grass Wetland systems |
description |
This study aimed to evaluate 1) the influence of gibberellic acid (GA3) in the development of Tifton 85 bermudagrass grown in constructed wetland systems (CWs) and 2) the plant's capacity to remove nutrients and sodium from synthetic municipal wastewater (SMW). The experiment was carried out in Viçosa, Minas Gerais, Brazil, and consisted of foliar applications of GA3 set in randomized blocks design, with four replicates and 6 treatments as following: NC (control with plants); 0 μM GA3; N1: 5 μM GA3; N2: 25 μM GA3; N3: 50 and N4: 100 μM GA3 per CWs, NC* (control with no plants): 0 μM GA3. The study was conducted over two crop cycles in the spring 2016. The parameters used to evaluate the performance of the Tifton 85 bermudagrass were its plant height, productivity, chlorophyll measurement, number of internodes, nutrients and Na removals. Chemical analyses of the effluents were conducted. In response to the application of GA3, the increase in height of Tifton 85 bermudagrass in the first crop cycle was higher than the increase in height in the second crop cycle. The decrease in plant growth in response to GA3 in the second crop cycle may be linked to the age of the plant tissue and climatic conditions. The greater growth of the plants cultivated in the CWs allows a more efficient removal of pollutants, using simple management and low cost. The results suggest that applying 50 μM of GA3 to the development of Tifton 85 bermudagrass provides higher dry matter yield and removal of nitrogen, phosphorus, and sodium for the first crop cycle in CWs. However, in the second crop cycle, the application of GA3 had no effect on dry matter production and nutrient removal by Tifton 85 bermudagrass in CWs. |
publishDate |
2018 |
dc.date.accessioned.fl_str_mv |
2018-12-17T13:07:24Z |
dc.date.available.fl_str_mv |
2018-12-17T13:07:24Z |
dc.date.issued.fl_str_mv |
2018-10-26 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://doi.org/10.1371/journal.pone.0206378 http://www.locus.ufv.br/handle/123456789/22814 |
dc.identifier.issn.none.fl_str_mv |
1932-6203 |
identifier_str_mv |
1932-6203 |
url |
https://doi.org/10.1371/journal.pone.0206378 http://www.locus.ufv.br/handle/123456789/22814 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofseries.pt-BR.fl_str_mv |
v. 13, n. 10, p. 1- 26, out. 2018 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Plos One |
publisher.none.fl_str_mv |
Plos One |
dc.source.none.fl_str_mv |
reponame:LOCUS Repositório Institucional da UFV instname:Universidade Federal de Viçosa (UFV) instacron:UFV |
instname_str |
Universidade Federal de Viçosa (UFV) |
instacron_str |
UFV |
institution |
UFV |
reponame_str |
LOCUS Repositório Institucional da UFV |
collection |
LOCUS Repositório Institucional da UFV |
bitstream.url.fl_str_mv |
https://locus.ufv.br//bitstream/123456789/22814/1/artigo.pdf https://locus.ufv.br//bitstream/123456789/22814/2/license.txt |
bitstream.checksum.fl_str_mv |
4b83e741870258482349663d848e1ff1 8a4605be74aa9ea9d79846c1fba20a33 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV) |
repository.mail.fl_str_mv |
fabiojreis@ufv.br |
_version_ |
1801213007731097600 |