On the power-counting renormalizability of a Lifshitz-type QFT in configuration space

Detalhes bibliográficos
Autor(a) principal: Franco, Daniel H. T.
Data de Publicação: 2014
Tipo de documento: Artigo
Idioma: eng
Título da fonte: LOCUS Repositório Institucional da UFV
Texto Completo: http://dx.doi.org/10.1007/s11040-014-9146-5
http://www.locus.ufv.br/handle/123456789/22231
Resumo: Recently, Hořava (Phys. Rev. D. 79, 084008, 2009) proposed a theory of gravity in 3+1 dimensions with anisotropic scaling using the traditional framework of quantum field theory (QFT). Such an anisotropic theory of gravity, characterized by a dynamical critical exponent z, has proven to be power-counting renormalizable at a z=3 Lifshitz Point. In the present article, we develop a mathematically precise version of power-counting theorem in Lorentz violating theories and apply this to the Hořava-Lifshitz (scalar field) models in configuration space. The analysis is performed under the light of the systematic use of the concept of extension of homogeneous distributions, a concept tailor-made to address the problem of the ultraviolet renormalization in QFT. This becomes particularly transparent in a Lifshitz-type QFT. In the specific case of the ϕ44-theory, we show that is sufficient to take z=3 in order to reach the ultraviolet finiteness of the S-matrix in all orders.
id UFV_88d18647b9088f3aac7ca15c09698e21
oai_identifier_str oai:locus.ufv.br:123456789/22231
network_acronym_str UFV
network_name_str LOCUS Repositório Institucional da UFV
repository_id_str 2145
spelling Franco, Daniel H. T.2018-10-10T16:29:36Z2018-10-10T16:29:36Z2014-05-0715729656http://dx.doi.org/10.1007/s11040-014-9146-5http://www.locus.ufv.br/handle/123456789/22231Recently, Hořava (Phys. Rev. D. 79, 084008, 2009) proposed a theory of gravity in 3+1 dimensions with anisotropic scaling using the traditional framework of quantum field theory (QFT). Such an anisotropic theory of gravity, characterized by a dynamical critical exponent z, has proven to be power-counting renormalizable at a z=3 Lifshitz Point. In the present article, we develop a mathematically precise version of power-counting theorem in Lorentz violating theories and apply this to the Hořava-Lifshitz (scalar field) models in configuration space. The analysis is performed under the light of the systematic use of the concept of extension of homogeneous distributions, a concept tailor-made to address the problem of the ultraviolet renormalization in QFT. This becomes particularly transparent in a Lifshitz-type QFT. In the specific case of the ϕ44-theory, we show that is sufficient to take z=3 in order to reach the ultraviolet finiteness of the S-matrix in all orders.engMathematical Physics, Analysis and Geometryv. 17, n. 1– 2, p. 139– 150, jun. 2014Springer Nature Switzerland AG.info:eu-repo/semantics/openAccessLifshitz-type theoryRenormalizationHomogeneous distributionsOn the power-counting renormalizability of a Lifshitz-type QFT in configuration spaceinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALartigo.pdfartigo.pdftexto completoapplication/pdf428058https://locus.ufv.br//bitstream/123456789/22231/1/artigo.pdfe63edb792fc907335d0b1b3b022b35b5MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://locus.ufv.br//bitstream/123456789/22231/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52123456789/222312018-10-10 13:33:32.287oai:locus.ufv.br:123456789/22231Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452018-10-10T16:33:32LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false
dc.title.en.fl_str_mv On the power-counting renormalizability of a Lifshitz-type QFT in configuration space
title On the power-counting renormalizability of a Lifshitz-type QFT in configuration space
spellingShingle On the power-counting renormalizability of a Lifshitz-type QFT in configuration space
Franco, Daniel H. T.
Lifshitz-type theory
Renormalization
Homogeneous distributions
title_short On the power-counting renormalizability of a Lifshitz-type QFT in configuration space
title_full On the power-counting renormalizability of a Lifshitz-type QFT in configuration space
title_fullStr On the power-counting renormalizability of a Lifshitz-type QFT in configuration space
title_full_unstemmed On the power-counting renormalizability of a Lifshitz-type QFT in configuration space
title_sort On the power-counting renormalizability of a Lifshitz-type QFT in configuration space
author Franco, Daniel H. T.
author_facet Franco, Daniel H. T.
author_role author
dc.contributor.author.fl_str_mv Franco, Daniel H. T.
dc.subject.pt-BR.fl_str_mv Lifshitz-type theory
Renormalization
Homogeneous distributions
topic Lifshitz-type theory
Renormalization
Homogeneous distributions
description Recently, Hořava (Phys. Rev. D. 79, 084008, 2009) proposed a theory of gravity in 3+1 dimensions with anisotropic scaling using the traditional framework of quantum field theory (QFT). Such an anisotropic theory of gravity, characterized by a dynamical critical exponent z, has proven to be power-counting renormalizable at a z=3 Lifshitz Point. In the present article, we develop a mathematically precise version of power-counting theorem in Lorentz violating theories and apply this to the Hořava-Lifshitz (scalar field) models in configuration space. The analysis is performed under the light of the systematic use of the concept of extension of homogeneous distributions, a concept tailor-made to address the problem of the ultraviolet renormalization in QFT. This becomes particularly transparent in a Lifshitz-type QFT. In the specific case of the ϕ44-theory, we show that is sufficient to take z=3 in order to reach the ultraviolet finiteness of the S-matrix in all orders.
publishDate 2014
dc.date.issued.fl_str_mv 2014-05-07
dc.date.accessioned.fl_str_mv 2018-10-10T16:29:36Z
dc.date.available.fl_str_mv 2018-10-10T16:29:36Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1007/s11040-014-9146-5
http://www.locus.ufv.br/handle/123456789/22231
dc.identifier.issn.none.fl_str_mv 15729656
identifier_str_mv 15729656
url http://dx.doi.org/10.1007/s11040-014-9146-5
http://www.locus.ufv.br/handle/123456789/22231
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartofseries.pt-BR.fl_str_mv v. 17, n. 1– 2, p. 139– 150, jun. 2014
dc.rights.driver.fl_str_mv Springer Nature Switzerland AG.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Springer Nature Switzerland AG.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Mathematical Physics, Analysis and Geometry
publisher.none.fl_str_mv Mathematical Physics, Analysis and Geometry
dc.source.none.fl_str_mv reponame:LOCUS Repositório Institucional da UFV
instname:Universidade Federal de Viçosa (UFV)
instacron:UFV
instname_str Universidade Federal de Viçosa (UFV)
instacron_str UFV
institution UFV
reponame_str LOCUS Repositório Institucional da UFV
collection LOCUS Repositório Institucional da UFV
bitstream.url.fl_str_mv https://locus.ufv.br//bitstream/123456789/22231/1/artigo.pdf
https://locus.ufv.br//bitstream/123456789/22231/2/license.txt
bitstream.checksum.fl_str_mv e63edb792fc907335d0b1b3b022b35b5
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)
repository.mail.fl_str_mv fabiojreis@ufv.br
_version_ 1801213064603762688