Classificação supervisionada de pedopaisagens do domínio dos mares de morros utilizando Redes Neurais Artificiais
Autor(a) principal: | |
---|---|
Data de Publicação: | 2005 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | LOCUS Repositório Institucional da UFV |
Texto Completo: | http://www.locus.ufv.br/handle/123456789/10972 |
Resumo: | O presente estudo foi desenvolvido com o objetivo de compreender a organização dos solos de paisagens dos mares de morros, reconhecer seus padrões e subsidiar seu mapeamento. A área de estudo situa-se na Região Noroeste fluminense, englobada pela folha topográfica Varre Sai do IBGE, que abrange parte dos municípios de Natividade, Porciúncula e Varre Sai. Para isso foram avaliadas as feições geomorfométricas que definem um padrão geomórfico das paisagens, sendo composta por altimetria, altimetria relativa, aspecto, curvatura, curvatura plana, perfil de curvatura, declividade, sentido do escoamento, escoamento acumulado e distância euclidiana da drenagem, sendo todas estas feições obtidas por técnicas de geoprocessamento. Todos os atributos foram obtidos a partir do modelo digital de elevação e, em razão disso, os dados primários de elevação foram os mais precisos possíveis. Através destes atributos geomorfométricos elaborou-se um padrão geomorfométrico das paisagens definidas e foram conduzidas classificações supervisionadas, utilizando-se redes neurais artificiais e o algoritmo de máxima verossimilhança, para fins de comparação. Os resultados mostraram ser possível a utilização de redes neurais artificiais para a classificação de paisagens de áreas montanhosas sob dissecação homogênea, com uma exatidão global de 70%, um pouco acima daquela obtida pelo algoritmo de máxima verossimilhança, que obteve uma exatidão global de aproximadamente 66%. Este estudo mostrou que a utilização de técnicas de geoprocessamento para gerar os atributos geomorfométricos, aliados a classificadores supervisionados, pode subsidiar o delineamento dos levantamentos de solos, tornando-os mais rápidos, menos dependentes da experiência do mapeador e menos onerosos, diminuindo a subjetividade dos mesmos. Constitui-se de uma abordagem nova no Brasil, que deve ser estendida para outras áreas com informações mais precisas de altimetria, para testar a sua eficácia. |
id |
UFV_8cb80fa03a196f7aa3012e09a3d4ca49 |
---|---|
oai_identifier_str |
oai:locus.ufv.br:123456789/10972 |
network_acronym_str |
UFV |
network_name_str |
LOCUS Repositório Institucional da UFV |
repository_id_str |
2145 |
spelling |
Ker, João CarlosVieira, Carlos Antonio OliveiraCarvalho Junior, Waldir dehttp://lattes.cnpq.br/7992394393174495Fernandes Filho, Elpídio Inácio2017-07-03T11:40:37Z2017-07-03T11:40:37Z2005-08-03CARVALHO JUNIOR, Waldir. Classificação supervisionada de pedopaisagens do domínio dos mares de morros utilizando Redes Neurais Artificiais. 2005. 143 f. Tese (Doutorado em Solos e Nutrição de Plantas) - Universidade Federal de Viçosa, Viçosa. 2005.http://www.locus.ufv.br/handle/123456789/10972O presente estudo foi desenvolvido com o objetivo de compreender a organização dos solos de paisagens dos mares de morros, reconhecer seus padrões e subsidiar seu mapeamento. A área de estudo situa-se na Região Noroeste fluminense, englobada pela folha topográfica Varre Sai do IBGE, que abrange parte dos municípios de Natividade, Porciúncula e Varre Sai. Para isso foram avaliadas as feições geomorfométricas que definem um padrão geomórfico das paisagens, sendo composta por altimetria, altimetria relativa, aspecto, curvatura, curvatura plana, perfil de curvatura, declividade, sentido do escoamento, escoamento acumulado e distância euclidiana da drenagem, sendo todas estas feições obtidas por técnicas de geoprocessamento. Todos os atributos foram obtidos a partir do modelo digital de elevação e, em razão disso, os dados primários de elevação foram os mais precisos possíveis. Através destes atributos geomorfométricos elaborou-se um padrão geomorfométrico das paisagens definidas e foram conduzidas classificações supervisionadas, utilizando-se redes neurais artificiais e o algoritmo de máxima verossimilhança, para fins de comparação. Os resultados mostraram ser possível a utilização de redes neurais artificiais para a classificação de paisagens de áreas montanhosas sob dissecação homogênea, com uma exatidão global de 70%, um pouco acima daquela obtida pelo algoritmo de máxima verossimilhança, que obteve uma exatidão global de aproximadamente 66%. Este estudo mostrou que a utilização de técnicas de geoprocessamento para gerar os atributos geomorfométricos, aliados a classificadores supervisionados, pode subsidiar o delineamento dos levantamentos de solos, tornando-os mais rápidos, menos dependentes da experiência do mapeador e menos onerosos, diminuindo a subjetividade dos mesmos. Constitui-se de uma abordagem nova no Brasil, que deve ser estendida para outras áreas com informações mais precisas de altimetria, para testar a sua eficácia.The present study was developed with the objective of understanding the soils organization on landscapes of mountainous areas, to recognize its patterns and to subsidize its surveys. The study area is in the Northwest Region of the State of Rio de Janeiro, included by the IBGE ́s topographical leaf “Varre Sai”, that englobe part of the municipal districts of Natividade, Porciúncula and Varre Sai. For that they were appraised the geomorphometrics features that define a geomorphic signature of the landscapes, being composed by elevation, relative elevation, aspect, curvature, curvature planes, curvature profile, slope, flow direction, flow accumulation and drainage ́s euclidian distance, being all these features obtained by geoprocessing techniques. All the attributes were obtained from the digital elevation model and, in reason of that, the primary data of elevation were the most precise possible. Through these geomorphometric attributes a geomorphic signature of the defined landscapes was elaborated and supervised classifications were made, being used artificial neural network and the algorithm of maximum verisimilitude, for comparison ends. The results showed to be possible the use of artificial neural network for the classification of landscapes of mountainous areas, with a global accuracy of 70%, a little above that obtained by the algorithm of maximum verisimilitude, that obtained a global accuracy of approximately 66%. This study showed that the use of geoprocessamento techniques to generate the geomorphometrics attributes, aided with supervised classifiers, can subsidize the soils surveys, turning them faster, less dependents of the experience of the expert and less onerous, decreasing the subjectivity. It is constituted of an unpublished approach in Brazil, that should be extended for others areas with more precise elevation information, in order to test the effectiveness.porUniversidade Federal de ViçosaModelagemSolosPaisagemRedes Neurais ArtificiaisCiências AgráriasClassificação supervisionada de pedopaisagens do domínio dos mares de morros utilizando Redes Neurais ArtificiaisLandscapes supervised classification of mountainous Areas using Artificial Neural Networkinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisUniversidade Federal de ViçosaDepartamento de SolosDoutor em Solos e Nutrição de PlantasViçosa - MG2005-08-03Doutoradoinfo:eu-repo/semantics/openAccessreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALtexto completo.pdftexto completo.pdftexto completoapplication/pdf9957574https://locus.ufv.br//bitstream/123456789/10972/1/texto%20completo.pdf03cd1b73f67de78f8c327fa4451cfa66MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://locus.ufv.br//bitstream/123456789/10972/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILtexto completo.pdf.jpgtexto completo.pdf.jpgIM Thumbnailimage/jpeg3651https://locus.ufv.br//bitstream/123456789/10972/3/texto%20completo.pdf.jpg9a99bc1ca340ac3ad70693d3902c8024MD53123456789/109722017-07-03 23:00:24.239oai:locus.ufv.br:123456789/10972Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452017-07-04T02:00:24LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false |
dc.title.pt-BR.fl_str_mv |
Classificação supervisionada de pedopaisagens do domínio dos mares de morros utilizando Redes Neurais Artificiais |
dc.title.en.fl_str_mv |
Landscapes supervised classification of mountainous Areas using Artificial Neural Network |
title |
Classificação supervisionada de pedopaisagens do domínio dos mares de morros utilizando Redes Neurais Artificiais |
spellingShingle |
Classificação supervisionada de pedopaisagens do domínio dos mares de morros utilizando Redes Neurais Artificiais Carvalho Junior, Waldir de Modelagem Solos Paisagem Redes Neurais Artificiais Ciências Agrárias |
title_short |
Classificação supervisionada de pedopaisagens do domínio dos mares de morros utilizando Redes Neurais Artificiais |
title_full |
Classificação supervisionada de pedopaisagens do domínio dos mares de morros utilizando Redes Neurais Artificiais |
title_fullStr |
Classificação supervisionada de pedopaisagens do domínio dos mares de morros utilizando Redes Neurais Artificiais |
title_full_unstemmed |
Classificação supervisionada de pedopaisagens do domínio dos mares de morros utilizando Redes Neurais Artificiais |
title_sort |
Classificação supervisionada de pedopaisagens do domínio dos mares de morros utilizando Redes Neurais Artificiais |
author |
Carvalho Junior, Waldir de |
author_facet |
Carvalho Junior, Waldir de |
author_role |
author |
dc.contributor.authorLattes.pt-BR.fl_str_mv |
http://lattes.cnpq.br/7992394393174495 |
dc.contributor.none.fl_str_mv |
Ker, João Carlos Vieira, Carlos Antonio Oliveira |
dc.contributor.author.fl_str_mv |
Carvalho Junior, Waldir de |
dc.contributor.advisor1.fl_str_mv |
Fernandes Filho, Elpídio Inácio |
contributor_str_mv |
Fernandes Filho, Elpídio Inácio |
dc.subject.pt-BR.fl_str_mv |
Modelagem Solos Paisagem Redes Neurais Artificiais |
topic |
Modelagem Solos Paisagem Redes Neurais Artificiais Ciências Agrárias |
dc.subject.cnpq.fl_str_mv |
Ciências Agrárias |
description |
O presente estudo foi desenvolvido com o objetivo de compreender a organização dos solos de paisagens dos mares de morros, reconhecer seus padrões e subsidiar seu mapeamento. A área de estudo situa-se na Região Noroeste fluminense, englobada pela folha topográfica Varre Sai do IBGE, que abrange parte dos municípios de Natividade, Porciúncula e Varre Sai. Para isso foram avaliadas as feições geomorfométricas que definem um padrão geomórfico das paisagens, sendo composta por altimetria, altimetria relativa, aspecto, curvatura, curvatura plana, perfil de curvatura, declividade, sentido do escoamento, escoamento acumulado e distância euclidiana da drenagem, sendo todas estas feições obtidas por técnicas de geoprocessamento. Todos os atributos foram obtidos a partir do modelo digital de elevação e, em razão disso, os dados primários de elevação foram os mais precisos possíveis. Através destes atributos geomorfométricos elaborou-se um padrão geomorfométrico das paisagens definidas e foram conduzidas classificações supervisionadas, utilizando-se redes neurais artificiais e o algoritmo de máxima verossimilhança, para fins de comparação. Os resultados mostraram ser possível a utilização de redes neurais artificiais para a classificação de paisagens de áreas montanhosas sob dissecação homogênea, com uma exatidão global de 70%, um pouco acima daquela obtida pelo algoritmo de máxima verossimilhança, que obteve uma exatidão global de aproximadamente 66%. Este estudo mostrou que a utilização de técnicas de geoprocessamento para gerar os atributos geomorfométricos, aliados a classificadores supervisionados, pode subsidiar o delineamento dos levantamentos de solos, tornando-os mais rápidos, menos dependentes da experiência do mapeador e menos onerosos, diminuindo a subjetividade dos mesmos. Constitui-se de uma abordagem nova no Brasil, que deve ser estendida para outras áreas com informações mais precisas de altimetria, para testar a sua eficácia. |
publishDate |
2005 |
dc.date.issued.fl_str_mv |
2005-08-03 |
dc.date.accessioned.fl_str_mv |
2017-07-03T11:40:37Z |
dc.date.available.fl_str_mv |
2017-07-03T11:40:37Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
CARVALHO JUNIOR, Waldir. Classificação supervisionada de pedopaisagens do domínio dos mares de morros utilizando Redes Neurais Artificiais. 2005. 143 f. Tese (Doutorado em Solos e Nutrição de Plantas) - Universidade Federal de Viçosa, Viçosa. 2005. |
dc.identifier.uri.fl_str_mv |
http://www.locus.ufv.br/handle/123456789/10972 |
identifier_str_mv |
CARVALHO JUNIOR, Waldir. Classificação supervisionada de pedopaisagens do domínio dos mares de morros utilizando Redes Neurais Artificiais. 2005. 143 f. Tese (Doutorado em Solos e Nutrição de Plantas) - Universidade Federal de Viçosa, Viçosa. 2005. |
url |
http://www.locus.ufv.br/handle/123456789/10972 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Viçosa |
publisher.none.fl_str_mv |
Universidade Federal de Viçosa |
dc.source.none.fl_str_mv |
reponame:LOCUS Repositório Institucional da UFV instname:Universidade Federal de Viçosa (UFV) instacron:UFV |
instname_str |
Universidade Federal de Viçosa (UFV) |
instacron_str |
UFV |
institution |
UFV |
reponame_str |
LOCUS Repositório Institucional da UFV |
collection |
LOCUS Repositório Institucional da UFV |
bitstream.url.fl_str_mv |
https://locus.ufv.br//bitstream/123456789/10972/1/texto%20completo.pdf https://locus.ufv.br//bitstream/123456789/10972/2/license.txt https://locus.ufv.br//bitstream/123456789/10972/3/texto%20completo.pdf.jpg |
bitstream.checksum.fl_str_mv |
03cd1b73f67de78f8c327fa4451cfa66 8a4605be74aa9ea9d79846c1fba20a33 9a99bc1ca340ac3ad70693d3902c8024 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV) |
repository.mail.fl_str_mv |
fabiojreis@ufv.br |
_version_ |
1801212967792934912 |