Using a multi-layer Lagrangian inverse analysis to study CO2 isotope exchange in plant canopies

Detalhes bibliográficos
Autor(a) principal: Santos, Marshall Victor Chagas
Data de Publicação: 2019
Tipo de documento: Tese
Idioma: eng
Título da fonte: LOCUS Repositório Institucional da UFV
Texto Completo: https://locus.ufv.br//handle/123456789/27677
Resumo: Stable isotopes of CO2 are useful to study biosphere-atmosphere exchange processes. Recent advances in optical based isotope techniques has provided high-temporal resolution and accurate isotope measurements suitable for ecosystem scale studies. These novel measuring techniques can be combined with micrometeorological approaches, such as multi-layer Lagrangian models, to study CO2 isotope exchange in plant canopies. The main objectives of this study were: 1) to evaluate the feasibility of the localized near-field theory (LNF) to study 13CO2 and C18OO isotope exchange in different plant canopies; 2) to examine the LNF theory as an independent non-isotopic method to estimate separately the net-photosynthesis (FA) and non-foliar respiration (FR) in a corn canopy; and 3) to evaluate whether direct half-hourly estimates of isotope compositions of net CO2 ( N), canopy ( P) and below-canopy ( R) fluxes from LNF could be used in a isotope based partitioning approach (IFP method) to partition NEE measurements. Concentration of stable isotopes of CO 2 were measured within and above a temperate deciduous forest, tallgrass prairie and corn field using a multi- port sampling system and the tunable diode laser spectroscopy (TDLAS) technique. An EC system was also used to measure the wind velocity and the net CO 2 fluxes (NEE) above the canopies. The performance assessment of LNF on estimating isotope exchange within different plant canopies and to partitioning NEE in a corn canopy included direct comparisons with the traditional isotope flux ratio (IFR) method and a night-time based flux partitioning (RP) approach, respectively. Changes in CO2 storage were used to investigate the degree of decoupling between below and above- canopy airflows. Results showed that the LNF estimates of NEE and isotope CO2 exchange for the forest canopy were greatly affected by the flux decoupling. However, the LNF theory was shown to be suitable within well-mixed short canopies, where changes in CO2 storage were small. The magnitude of CO2 concentration gradients had great impact on both IFR and LNF N estimates. Nevertheless, the LNF theory reduced roughly 74% the uncertainties of IFR method. For the non-isotope partitioning, The LNF FA estimates captured the expected seasonal canopy physiological variation better than RP. Large uncertainties in LNF FR estimates were observed when the canopy was fully developed under low turbulent mixing periods. For the isotope-derived partitioning, the IFP method was highly sensitive to the Deq, where large uncertainties were found when Deq < 3 Å. However, a considerable reduction in the uncertainties and more realistic flux estimates were observed when weak Deq (< 3 Å) periods was filtered out from IFP predictions. Overall, these results suggests that LNF theory can be successfully used to study isotope exchange and partitioning NEE in well-mixed plant canopies. However, further studies are still needed to quantify the random and systematic errors associated with LNF predictions.
id UFV_8fadcb941ddb6ce0e68b75bce4df621a
oai_identifier_str oai:locus.ufv.br:123456789/27677
network_acronym_str UFV
network_name_str LOCUS Repositório Institucional da UFV
repository_id_str 2145
spelling Santos, Marshall Victor Chagas2021-04-14T15:47:29Z2021-04-14T15:47:29Z2019-04-14SANTOS, Marshall Victor Chagas. Usando uma análise Lagrangeana inversa de multicamadas para estudar fluxos isotópicos de CO2 em dosséis vegetativos. 2019. 90 f. Tese (Doutorado em Meteorologia Aplicada) - Universidade Federal de Viçosa, Viçosa. 2019.https://locus.ufv.br//handle/123456789/27677Stable isotopes of CO2 are useful to study biosphere-atmosphere exchange processes. Recent advances in optical based isotope techniques has provided high-temporal resolution and accurate isotope measurements suitable for ecosystem scale studies. These novel measuring techniques can be combined with micrometeorological approaches, such as multi-layer Lagrangian models, to study CO2 isotope exchange in plant canopies. The main objectives of this study were: 1) to evaluate the feasibility of the localized near-field theory (LNF) to study 13CO2 and C18OO isotope exchange in different plant canopies; 2) to examine the LNF theory as an independent non-isotopic method to estimate separately the net-photosynthesis (FA) and non-foliar respiration (FR) in a corn canopy; and 3) to evaluate whether direct half-hourly estimates of isotope compositions of net CO2 ( N), canopy ( P) and below-canopy ( R) fluxes from LNF could be used in a isotope based partitioning approach (IFP method) to partition NEE measurements. Concentration of stable isotopes of CO 2 were measured within and above a temperate deciduous forest, tallgrass prairie and corn field using a multi- port sampling system and the tunable diode laser spectroscopy (TDLAS) technique. An EC system was also used to measure the wind velocity and the net CO 2 fluxes (NEE) above the canopies. The performance assessment of LNF on estimating isotope exchange within different plant canopies and to partitioning NEE in a corn canopy included direct comparisons with the traditional isotope flux ratio (IFR) method and a night-time based flux partitioning (RP) approach, respectively. Changes in CO2 storage were used to investigate the degree of decoupling between below and above- canopy airflows. Results showed that the LNF estimates of NEE and isotope CO2 exchange for the forest canopy were greatly affected by the flux decoupling. However, the LNF theory was shown to be suitable within well-mixed short canopies, where changes in CO2 storage were small. The magnitude of CO2 concentration gradients had great impact on both IFR and LNF N estimates. Nevertheless, the LNF theory reduced roughly 74% the uncertainties of IFR method. For the non-isotope partitioning, The LNF FA estimates captured the expected seasonal canopy physiological variation better than RP. Large uncertainties in LNF FR estimates were observed when the canopy was fully developed under low turbulent mixing periods. For the isotope-derived partitioning, the IFP method was highly sensitive to the Deq, where large uncertainties were found when Deq < 3 Å. However, a considerable reduction in the uncertainties and more realistic flux estimates were observed when weak Deq (< 3 Å) periods was filtered out from IFP predictions. Overall, these results suggests that LNF theory can be successfully used to study isotope exchange and partitioning NEE in well-mixed plant canopies. However, further studies are still needed to quantify the random and systematic errors associated with LNF predictions.Isótopos estáveis de CO 2 são ferramentas úteis para o estudo de processos de trocas gasosas na interação biosfera-atmosfera. Os avanços recentes nas técnicas de isótopos baseados em espectroscopia óptica, permitem que as razões de isótopos sejam medidas em ecossistemas com alta frequência e acurácia. Essas novas tecnologias para medição de isótopos podem ser combinadas com métodos micrometeorológicos, tais como modelos Lagrangeanos de multicamadas, para o estudo de fluxos isotópicos em dosséis vegetativos. Os principais objetivos desse estudo foram: 1) avaliar a viabilidade da teoria Lagrangeana de campo-próximo localizado (LNF) para estudar fluxos isotópicos de 13CO2 e C18 OO em dosséis vegetativos; 2) examinar a teoria LNF como um método independente para estimar a fotossíntese (FA) e respiração não-foliar (FR) em um dossel de milho; e 3) avaliar se as estimativas da composição isotópica da troca líquida de CO2 (NEE) acima do dossel ( N ), da FA ( P) e da FR ( R) fornecidas pelo método LNF podem ser utilizadas para separar as medições do NEE através de uma abordagem de particionamento isotópico (método IFP). Nesse estudo, as razões de mistura de isótopos de CO2 foram medidas em diferentes níveis dentro e acima do dossel em floresta temperada, pradaria e milharal usando um sistema de amostragem multiporta e um sistema analisador de gases a laser de diodo ajustável (TDLAS). Além disso, os dados de velocidade do vento e do NEE foram coletados através de um sistema de covariância dos vórtices turbulentos (EC), instalado acima dos dosséis. A avaliação do desempenho do método LNF para a estimativa de fluxos isotópicos dentro de diferentes tipos de dosséis e para o particionamento do NEE em um dossel de milho foi realizada por comparações diretas com o método da razão de fluxo isotópico (IFR) e um método estatístico de particionamento de fluxo baseado na extrapolação de dados noturnos (RP), respectivamente. As variações no armazenamento de fluxo de CO2 foram utilizadas para investigar o grau de desacoplamento entre os fluxos abaixo e acima do dossel. Os resultados mostraram que as estimativas do NEE e dos fluxos isotópicos para o dossel de floresta foram fortemente afetados pelo desacoplamento de fluxo. No entanto, o método LNF se mostrou adequado quando utilizado em dosséis mais baixos com maior mistura turbulenta, onde as variações no armazenamento de fluxo foram pequenas. Ambos os métodos LNF e IFR foram afetados pela magnitude dos gradientes de concentração de CO2. Apesar disso, o método LNF foi capaz de reduzir, em média, 74% das incertezas mostradas pelo método IFR. Para o particionamento de fluxo, o método LNF foi capaz de capturar as variações sazonais fisiológicas da FA com maior eficiência do que o método RP. Por outro lado, grandes incertezas foram observadas para as estimativas da LNF FR durante períodos de baixa mistura turbulenta quando o dossel estava completamente desenvolvido. Para o particionamento isotópico, o método IFP se mostrou altamente sensível ao desequilíbrio isotópico (Deq), onde grandes incertezas foram observadas quando Deq < 3.2 Å No entanto, uma considerável redução das incertezas e estimativas de fluxos mais realistas foram obtidas quando os períodos com baixo Deq (< 3.2 Å) foram excluídos das estimativas do IFP. Por fim, tais resultados sugerem que a teoria LNF pode ser utilizada eficazmente para estudar fluxos isotópicos e para partição do NEE em dosséis baixos com alta mistura turbulenta. No entanto, estudos adicionais ainda são necessários para quantificar os erros aleatórios e sistemáticos associados às estimativas do LNF.Universidade Federal de ViçosaMeteorologia AplicadaUsing a multi-layer Lagrangian inverse analysis to study CO2 isotope exchange in plant canopiesUsando uma análise Lagrangeana inversa de multicamadas para estudar fluxos isotópicos de CO2 em dosséis vegetativosinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisDepartamento de Engenharia AgrícolaDoutor em Meteorologia AplicadaViçosa - MGDoutoradoengreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVinfo:eu-repo/semantics/openAccessORIGINALtexto completo.pdftexto completo.pdftexto completoapplication/pdf2400970https://locus.ufv.br//bitstream/123456789/27677/1/texto%20completo.pdf0f46d0c8755f5491c8cfcb46a733ee6dMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://locus.ufv.br//bitstream/123456789/27677/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52123456789/276772021-04-14 12:49:51.468oai:locus.ufv.br:123456789/27677Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452021-04-14T15:49:51LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false
dc.title.pt-BR.fl_str_mv Using a multi-layer Lagrangian inverse analysis to study CO2 isotope exchange in plant canopies
Usando uma análise Lagrangeana inversa de multicamadas para estudar fluxos isotópicos de CO2 em dosséis vegetativos
title Using a multi-layer Lagrangian inverse analysis to study CO2 isotope exchange in plant canopies
spellingShingle Using a multi-layer Lagrangian inverse analysis to study CO2 isotope exchange in plant canopies
Santos, Marshall Victor Chagas
Meteorologia Aplicada
title_short Using a multi-layer Lagrangian inverse analysis to study CO2 isotope exchange in plant canopies
title_full Using a multi-layer Lagrangian inverse analysis to study CO2 isotope exchange in plant canopies
title_fullStr Using a multi-layer Lagrangian inverse analysis to study CO2 isotope exchange in plant canopies
title_full_unstemmed Using a multi-layer Lagrangian inverse analysis to study CO2 isotope exchange in plant canopies
title_sort Using a multi-layer Lagrangian inverse analysis to study CO2 isotope exchange in plant canopies
author Santos, Marshall Victor Chagas
author_facet Santos, Marshall Victor Chagas
author_role author
dc.contributor.author.fl_str_mv Santos, Marshall Victor Chagas
dc.subject.pt-BR.fl_str_mv Meteorologia Aplicada
topic Meteorologia Aplicada
description Stable isotopes of CO2 are useful to study biosphere-atmosphere exchange processes. Recent advances in optical based isotope techniques has provided high-temporal resolution and accurate isotope measurements suitable for ecosystem scale studies. These novel measuring techniques can be combined with micrometeorological approaches, such as multi-layer Lagrangian models, to study CO2 isotope exchange in plant canopies. The main objectives of this study were: 1) to evaluate the feasibility of the localized near-field theory (LNF) to study 13CO2 and C18OO isotope exchange in different plant canopies; 2) to examine the LNF theory as an independent non-isotopic method to estimate separately the net-photosynthesis (FA) and non-foliar respiration (FR) in a corn canopy; and 3) to evaluate whether direct half-hourly estimates of isotope compositions of net CO2 ( N), canopy ( P) and below-canopy ( R) fluxes from LNF could be used in a isotope based partitioning approach (IFP method) to partition NEE measurements. Concentration of stable isotopes of CO 2 were measured within and above a temperate deciduous forest, tallgrass prairie and corn field using a multi- port sampling system and the tunable diode laser spectroscopy (TDLAS) technique. An EC system was also used to measure the wind velocity and the net CO 2 fluxes (NEE) above the canopies. The performance assessment of LNF on estimating isotope exchange within different plant canopies and to partitioning NEE in a corn canopy included direct comparisons with the traditional isotope flux ratio (IFR) method and a night-time based flux partitioning (RP) approach, respectively. Changes in CO2 storage were used to investigate the degree of decoupling between below and above- canopy airflows. Results showed that the LNF estimates of NEE and isotope CO2 exchange for the forest canopy were greatly affected by the flux decoupling. However, the LNF theory was shown to be suitable within well-mixed short canopies, where changes in CO2 storage were small. The magnitude of CO2 concentration gradients had great impact on both IFR and LNF N estimates. Nevertheless, the LNF theory reduced roughly 74% the uncertainties of IFR method. For the non-isotope partitioning, The LNF FA estimates captured the expected seasonal canopy physiological variation better than RP. Large uncertainties in LNF FR estimates were observed when the canopy was fully developed under low turbulent mixing periods. For the isotope-derived partitioning, the IFP method was highly sensitive to the Deq, where large uncertainties were found when Deq < 3 Å. However, a considerable reduction in the uncertainties and more realistic flux estimates were observed when weak Deq (< 3 Å) periods was filtered out from IFP predictions. Overall, these results suggests that LNF theory can be successfully used to study isotope exchange and partitioning NEE in well-mixed plant canopies. However, further studies are still needed to quantify the random and systematic errors associated with LNF predictions.
publishDate 2019
dc.date.issued.fl_str_mv 2019-04-14
dc.date.accessioned.fl_str_mv 2021-04-14T15:47:29Z
dc.date.available.fl_str_mv 2021-04-14T15:47:29Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv SANTOS, Marshall Victor Chagas. Usando uma análise Lagrangeana inversa de multicamadas para estudar fluxos isotópicos de CO2 em dosséis vegetativos. 2019. 90 f. Tese (Doutorado em Meteorologia Aplicada) - Universidade Federal de Viçosa, Viçosa. 2019.
dc.identifier.uri.fl_str_mv https://locus.ufv.br//handle/123456789/27677
identifier_str_mv SANTOS, Marshall Victor Chagas. Usando uma análise Lagrangeana inversa de multicamadas para estudar fluxos isotópicos de CO2 em dosséis vegetativos. 2019. 90 f. Tese (Doutorado em Meteorologia Aplicada) - Universidade Federal de Viçosa, Viçosa. 2019.
url https://locus.ufv.br//handle/123456789/27677
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Viçosa
publisher.none.fl_str_mv Universidade Federal de Viçosa
dc.source.none.fl_str_mv reponame:LOCUS Repositório Institucional da UFV
instname:Universidade Federal de Viçosa (UFV)
instacron:UFV
instname_str Universidade Federal de Viçosa (UFV)
instacron_str UFV
institution UFV
reponame_str LOCUS Repositório Institucional da UFV
collection LOCUS Repositório Institucional da UFV
bitstream.url.fl_str_mv https://locus.ufv.br//bitstream/123456789/27677/1/texto%20completo.pdf
https://locus.ufv.br//bitstream/123456789/27677/2/license.txt
bitstream.checksum.fl_str_mv 0f46d0c8755f5491c8cfcb46a733ee6d
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)
repository.mail.fl_str_mv fabiojreis@ufv.br
_version_ 1801212969206415360