Genome-wide association and regional heritability mapping of plant architecture, lodging and productivity in Phaseolus vulgaris

Detalhes bibliográficos
Autor(a) principal: Resende, Marcos Deon V. de
Data de Publicação: 2018
Outros Autores: Resende, Rafael T., Azevedo, Camila F., Silva, Fabyano Fonseca e, Melo, Leonardo C., Pereira, Helton S., Souza, Thiago Lívio P. O., Valdisser, Paula Arielle M. R., Brondani, Claudio, Vianello, Rosana Pereira
Tipo de documento: Artigo
Idioma: eng
Título da fonte: LOCUS Repositório Institucional da UFV
Texto Completo: https://doi.org/10.1534/g3.118.200493
http://www.locus.ufv.br/handle/123456789/24327
Resumo: The availability of high-density molecular markers in common bean has allowed to explore the genetic basis of important complex agronomic traits with increased resolution. Genome-Wide Association Studies (GWAS) and Regional Heritability Mapping (RHM) are two analytical approaches for the detection of genetic variants. We carried out GWAS and RHM for plant architecture, lodging and productivity across two important growing environments in Brazil in a germplasm of 188 common bean varieties using DArTseq genotyping strategies. The coefficient of determination of G · E interaction (c 2 int ) was equal to 17, 21 and 41%, respectively for the traits architecture, lodging, and productivity. Trait heritabilities were estimated at 0.81 (architecture), 0.79 (lodging) and 0.43 (productivity), and total genomic heritability accounted for large proportions (72% to 100%) of trait heritability. At the same probability threshold, three marker–trait associations were detected using GWAS, while RHM detected eight QTL encompassing 145 markers along five chromosomes. The proportion of genomic heritability explained by RHM was considerably higher (35.48 to 58.02) than that explained by GWAS (28.39 to 30.37). In general, RHM accounted for larger fractions of the additive genetic variance being captured by markers effects inside the defined regions. Nevertheless, a considerable proportion of the heritability is still missing ( 42% to 64%), probably due to LD between markers and genes and/or rare allele variants not sampled. RHM in autogamous species had the potential to identify larger-effect QTL combining allelic variants that could be effectively incorporated into whole-genome prediction models and tracked through breeding generations using marker-assisted selection.
id UFV_92b5f9f061a4c5b066315c5f99e9777d
oai_identifier_str oai:locus.ufv.br:123456789/24327
network_acronym_str UFV
network_name_str LOCUS Repositório Institucional da UFV
repository_id_str 2145
spelling Resende, Marcos Deon V. deResende, Rafael T.Azevedo, Camila F.Silva, Fabyano Fonseca eMelo, Leonardo C.Pereira, Helton S.Souza, Thiago Lívio P. O.Valdisser, Paula Arielle M. R.Brondani, ClaudioVianello, Rosana Pereira2019-04-05T16:19:58Z2019-04-05T16:19:58Z2018-0821601836https://doi.org/10.1534/g3.118.200493http://www.locus.ufv.br/handle/123456789/24327The availability of high-density molecular markers in common bean has allowed to explore the genetic basis of important complex agronomic traits with increased resolution. Genome-Wide Association Studies (GWAS) and Regional Heritability Mapping (RHM) are two analytical approaches for the detection of genetic variants. We carried out GWAS and RHM for plant architecture, lodging and productivity across two important growing environments in Brazil in a germplasm of 188 common bean varieties using DArTseq genotyping strategies. The coefficient of determination of G · E interaction (c 2 int ) was equal to 17, 21 and 41%, respectively for the traits architecture, lodging, and productivity. Trait heritabilities were estimated at 0.81 (architecture), 0.79 (lodging) and 0.43 (productivity), and total genomic heritability accounted for large proportions (72% to 100%) of trait heritability. At the same probability threshold, three marker–trait associations were detected using GWAS, while RHM detected eight QTL encompassing 145 markers along five chromosomes. The proportion of genomic heritability explained by RHM was considerably higher (35.48 to 58.02) than that explained by GWAS (28.39 to 30.37). In general, RHM accounted for larger fractions of the additive genetic variance being captured by markers effects inside the defined regions. Nevertheless, a considerable proportion of the heritability is still missing ( 42% to 64%), probably due to LD between markers and genes and/or rare allele variants not sampled. RHM in autogamous species had the potential to identify larger-effect QTL combining allelic variants that could be effectively incorporated into whole-genome prediction models and tracked through breeding generations using marker-assisted selection.engG3: Genes, Genomes, GeneticsVolume 8 Issue 8, Pages 2841- 2854, August 2018Common beansRHM QTLGWAS QTLDArTseq HeritabilityGenome-wide association and regional heritability mapping of plant architecture, lodging and productivity in Phaseolus vulgarisinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfinfo:eu-repo/semantics/openAccessreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALartigo.pdfartigo.pdftexto completoapplication/pdf1480939https://locus.ufv.br//bitstream/123456789/24327/1/artigo.pdf97c876d77d3ce3bbb3401ff1e89d6262MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://locus.ufv.br//bitstream/123456789/24327/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52123456789/243272019-04-05 13:24:36.204oai:locus.ufv.br:123456789/24327Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452019-04-05T16:24:36LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false
dc.title.en.fl_str_mv Genome-wide association and regional heritability mapping of plant architecture, lodging and productivity in Phaseolus vulgaris
title Genome-wide association and regional heritability mapping of plant architecture, lodging and productivity in Phaseolus vulgaris
spellingShingle Genome-wide association and regional heritability mapping of plant architecture, lodging and productivity in Phaseolus vulgaris
Resende, Marcos Deon V. de
Common beans
RHM QTL
GWAS QTL
DArTseq Heritability
title_short Genome-wide association and regional heritability mapping of plant architecture, lodging and productivity in Phaseolus vulgaris
title_full Genome-wide association and regional heritability mapping of plant architecture, lodging and productivity in Phaseolus vulgaris
title_fullStr Genome-wide association and regional heritability mapping of plant architecture, lodging and productivity in Phaseolus vulgaris
title_full_unstemmed Genome-wide association and regional heritability mapping of plant architecture, lodging and productivity in Phaseolus vulgaris
title_sort Genome-wide association and regional heritability mapping of plant architecture, lodging and productivity in Phaseolus vulgaris
author Resende, Marcos Deon V. de
author_facet Resende, Marcos Deon V. de
Resende, Rafael T.
Azevedo, Camila F.
Silva, Fabyano Fonseca e
Melo, Leonardo C.
Pereira, Helton S.
Souza, Thiago Lívio P. O.
Valdisser, Paula Arielle M. R.
Brondani, Claudio
Vianello, Rosana Pereira
author_role author
author2 Resende, Rafael T.
Azevedo, Camila F.
Silva, Fabyano Fonseca e
Melo, Leonardo C.
Pereira, Helton S.
Souza, Thiago Lívio P. O.
Valdisser, Paula Arielle M. R.
Brondani, Claudio
Vianello, Rosana Pereira
author2_role author
author
author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Resende, Marcos Deon V. de
Resende, Rafael T.
Azevedo, Camila F.
Silva, Fabyano Fonseca e
Melo, Leonardo C.
Pereira, Helton S.
Souza, Thiago Lívio P. O.
Valdisser, Paula Arielle M. R.
Brondani, Claudio
Vianello, Rosana Pereira
dc.subject.pt-BR.fl_str_mv Common beans
RHM QTL
GWAS QTL
DArTseq Heritability
topic Common beans
RHM QTL
GWAS QTL
DArTseq Heritability
description The availability of high-density molecular markers in common bean has allowed to explore the genetic basis of important complex agronomic traits with increased resolution. Genome-Wide Association Studies (GWAS) and Regional Heritability Mapping (RHM) are two analytical approaches for the detection of genetic variants. We carried out GWAS and RHM for plant architecture, lodging and productivity across two important growing environments in Brazil in a germplasm of 188 common bean varieties using DArTseq genotyping strategies. The coefficient of determination of G · E interaction (c 2 int ) was equal to 17, 21 and 41%, respectively for the traits architecture, lodging, and productivity. Trait heritabilities were estimated at 0.81 (architecture), 0.79 (lodging) and 0.43 (productivity), and total genomic heritability accounted for large proportions (72% to 100%) of trait heritability. At the same probability threshold, three marker–trait associations were detected using GWAS, while RHM detected eight QTL encompassing 145 markers along five chromosomes. The proportion of genomic heritability explained by RHM was considerably higher (35.48 to 58.02) than that explained by GWAS (28.39 to 30.37). In general, RHM accounted for larger fractions of the additive genetic variance being captured by markers effects inside the defined regions. Nevertheless, a considerable proportion of the heritability is still missing ( 42% to 64%), probably due to LD between markers and genes and/or rare allele variants not sampled. RHM in autogamous species had the potential to identify larger-effect QTL combining allelic variants that could be effectively incorporated into whole-genome prediction models and tracked through breeding generations using marker-assisted selection.
publishDate 2018
dc.date.issued.fl_str_mv 2018-08
dc.date.accessioned.fl_str_mv 2019-04-05T16:19:58Z
dc.date.available.fl_str_mv 2019-04-05T16:19:58Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://doi.org/10.1534/g3.118.200493
http://www.locus.ufv.br/handle/123456789/24327
dc.identifier.issn.none.fl_str_mv 21601836
identifier_str_mv 21601836
url https://doi.org/10.1534/g3.118.200493
http://www.locus.ufv.br/handle/123456789/24327
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartofseries.pt-BR.fl_str_mv Volume 8 Issue 8, Pages 2841- 2854, August 2018
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv G3: Genes, Genomes, Genetics
publisher.none.fl_str_mv G3: Genes, Genomes, Genetics
dc.source.none.fl_str_mv reponame:LOCUS Repositório Institucional da UFV
instname:Universidade Federal de Viçosa (UFV)
instacron:UFV
instname_str Universidade Federal de Viçosa (UFV)
instacron_str UFV
institution UFV
reponame_str LOCUS Repositório Institucional da UFV
collection LOCUS Repositório Institucional da UFV
bitstream.url.fl_str_mv https://locus.ufv.br//bitstream/123456789/24327/1/artigo.pdf
https://locus.ufv.br//bitstream/123456789/24327/2/license.txt
bitstream.checksum.fl_str_mv 97c876d77d3ce3bbb3401ff1e89d6262
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)
repository.mail.fl_str_mv fabiojreis@ufv.br
_version_ 1801213001385115648