Modelagem de povoamentos de eucalipto no nordeste da Bahia utilizando regressão e redes neurais artificiais

Detalhes bibliográficos
Autor(a) principal: Dávila Vega, Andreina Epifanía
Data de Publicação: 2018
Tipo de documento: Dissertação
Idioma: por
Título da fonte: LOCUS Repositório Institucional da UFV
Texto Completo: http://www.locus.ufv.br/handle/123456789/19444
Resumo: O objetivo deste estudo foi avaliar a eficiência do emprego das redes neurais artificiais (RNA) na prognose do crescimento de povoamentos de eucalipto localizados ao Nordeste do Estado da Bahia, a partir de dados de Inventario Florestal Continuo (IFC) históricos de parcelas permanentes. Para o atendimento do objetivo foi necessária a construção de curvas de índice local, o que conseguiu delimitar três tipos de áreas produtivas segundo sua capacidade. A aplicação de um modelo de densidade de variável (Clutter) resultou em equações precisas para a estimação de volumes e áreas basais futuras, permitindo, mediante um modelo para estimar área basal em função do sítio, a construção de tabelas de produção para três classes de sítio (S1=35, S2=27 e S3=19), nas idades compreendidas entre 2 até 9 anos, definindo idades técnicas de corte (ITC), quando IMA=ICA, entre 4,8 e 5,2 anos para cada sítio. Comprovada a efetividade do modelo de crescimento e produção, em seguida foi avaliada a eficiência das RNA configuradas para estimar volumes futuros, treinadas com dados de IFC, climáticos e fisiográficos obtidos mediante procedimento de extração de informação das imagens raster das áreas de estudo. Essas comparações foram feitas por meio de estatísticas clássicas de validação e análises de resíduos. Com as RNA treinadas, foram estimados os volumes e IMAs para os 6 e 7 anos de idade. Este IMA constituiu a camada de saída no treinamento de uma segunda rede, em que as variáveis de entrada foram aquelas climáticas e fisiográficas. A rede treinada foi aplicada para espacializar a produtividade para as quatro áreas de estudo. O IMA aos 7 anos (IMA7) variou de 8,15 até 55,35 m3ha 1ano̵ 1, sendo os maiores localizados próximos ao litoral. A inteligência artificial (RNA) foi eficiente para a construção de mapas de produtividade. Esse tipo de mapa é útil para estudos visando definir novas áreas de implantação, ajudando na diminuição de riscos em novos investimentos das empresas para futuros projetos ou reformas.
id UFV_931240ba09a9add5f9c6df2edbed41f9
oai_identifier_str oai:locus.ufv.br:123456789/19444
network_acronym_str UFV
network_name_str LOCUS Repositório Institucional da UFV
repository_id_str 2145
spelling Soares, Carlos Pedro BoechatDávila Vega, Andreina Epifaníahttp://lattes.cnpq.br/9807098068113617Leite, Helio Garcia2018-05-10T13:15:42Z2018-05-10T13:15:42Z2018-02-23DÁVILA VEGA, Andreina Epifanía. Modelagem de povoamentos de eucalipto no nordeste da Bahia utilizando regressão e redes neurais artificiais. 2018. 52f. Dissertação (Mestrado em Ciência Florestal) - Universidade Federal de Viçosa, Viçosa. 2018.http://www.locus.ufv.br/handle/123456789/19444O objetivo deste estudo foi avaliar a eficiência do emprego das redes neurais artificiais (RNA) na prognose do crescimento de povoamentos de eucalipto localizados ao Nordeste do Estado da Bahia, a partir de dados de Inventario Florestal Continuo (IFC) históricos de parcelas permanentes. Para o atendimento do objetivo foi necessária a construção de curvas de índice local, o que conseguiu delimitar três tipos de áreas produtivas segundo sua capacidade. A aplicação de um modelo de densidade de variável (Clutter) resultou em equações precisas para a estimação de volumes e áreas basais futuras, permitindo, mediante um modelo para estimar área basal em função do sítio, a construção de tabelas de produção para três classes de sítio (S1=35, S2=27 e S3=19), nas idades compreendidas entre 2 até 9 anos, definindo idades técnicas de corte (ITC), quando IMA=ICA, entre 4,8 e 5,2 anos para cada sítio. Comprovada a efetividade do modelo de crescimento e produção, em seguida foi avaliada a eficiência das RNA configuradas para estimar volumes futuros, treinadas com dados de IFC, climáticos e fisiográficos obtidos mediante procedimento de extração de informação das imagens raster das áreas de estudo. Essas comparações foram feitas por meio de estatísticas clássicas de validação e análises de resíduos. Com as RNA treinadas, foram estimados os volumes e IMAs para os 6 e 7 anos de idade. Este IMA constituiu a camada de saída no treinamento de uma segunda rede, em que as variáveis de entrada foram aquelas climáticas e fisiográficas. A rede treinada foi aplicada para espacializar a produtividade para as quatro áreas de estudo. O IMA aos 7 anos (IMA7) variou de 8,15 até 55,35 m3ha 1ano̵ 1, sendo os maiores localizados próximos ao litoral. A inteligência artificial (RNA) foi eficiente para a construção de mapas de produtividade. Esse tipo de mapa é útil para estudos visando definir novas áreas de implantação, ajudando na diminuição de riscos em novos investimentos das empresas para futuros projetos ou reformas.The objective of this study was to evaluate the efficiency of the use of artificial neural networks (ANN) in the prognosis of Eucalyptus stands growth located to the northeast state of Bahia, with historical data of permanent plots from of continuous forest inventories (CFI). To achieve the objective it was necessary the construction of local index curves, which managed to delimit three types of productive areas according to their capacity. The application of a variable density model (Clutter), resulted in efficient equations for the estimation of volumes and future basal areas. Through a model for areal basal estimation having site values, production tables for three site classes (S1 = 35, S2 = 27 and S3 = 19) were constructed, with ages between 2 to 9 years old, defining technical cutting ages (ITC), when MAI=CAI, between 4.8 and 5.2 years for each site. Verified the efficiency of the growth and production model, the efficiency of the ANN were evaluated, configured for estimate future volumes from training with CFI data, climate and physiographic data obtained by extracting information from the raster images for the study area. These comparisons were made through classical validation and residue analysis statistics. With the trained RNA, volume and MAI values were estimated for 6 and 7 years of age. This MAI was the output layer of a second network, in which climatic and physiographic were the input variables. The trained network was applied to spatialize productivity for the four study areas. The MAI at 7 years (MAI7) ranged from 8.15 to 55.35 m3ha̵ 1ano̵ 1, the highest values were located near the coast. Artificial intelligence (AI) was efficient for the construction of productivity maps. This type of maps are useful for studies aimed at defining new areas of implantation, helping to reduce risks in new investments of companies for future projects or reforms.Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorporUniversidade Federal de ViçosaEucalipto - CrescimentoEucalipto - produçãoRedes neurais artificiaisMapa de produtividadeEucalyptusRNAManejo FlorestalModelagem de povoamentos de eucalipto no nordeste da Bahia utilizando regressão e redes neurais artificiaisModeling of eucalyptus stands in the northeast of Bahia using regression and artificial neural networksinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisUniversidade Federal de ViçosaDepartamento de Engenharia FlorestalMestre em Ciência FlorestalViçosa - MG2018-02-23Mestradoinfo:eu-repo/semantics/openAccessreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALtexto completo.pdftexto completo.pdftexto completoapplication/pdf6852351https://locus.ufv.br//bitstream/123456789/19444/1/texto%20completo.pdf238f87c924792bb6d204502227d520d3MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://locus.ufv.br//bitstream/123456789/19444/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILtexto completo.pdf.jpgtexto completo.pdf.jpgIM Thumbnailimage/jpeg3562https://locus.ufv.br//bitstream/123456789/19444/3/texto%20completo.pdf.jpgaca02c5574d2a1d3356e85230ef08621MD53123456789/194442018-05-11 11:39:16.536oai:locus.ufv.br:123456789/19444Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452018-05-11T14:39:16LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false
dc.title.pt-BR.fl_str_mv Modelagem de povoamentos de eucalipto no nordeste da Bahia utilizando regressão e redes neurais artificiais
dc.title.en.fl_str_mv Modeling of eucalyptus stands in the northeast of Bahia using regression and artificial neural networks
title Modelagem de povoamentos de eucalipto no nordeste da Bahia utilizando regressão e redes neurais artificiais
spellingShingle Modelagem de povoamentos de eucalipto no nordeste da Bahia utilizando regressão e redes neurais artificiais
Dávila Vega, Andreina Epifanía
Eucalipto - Crescimento
Eucalipto - produção
Redes neurais artificiais
Mapa de produtividade
Eucalyptus
RNA
Manejo Florestal
title_short Modelagem de povoamentos de eucalipto no nordeste da Bahia utilizando regressão e redes neurais artificiais
title_full Modelagem de povoamentos de eucalipto no nordeste da Bahia utilizando regressão e redes neurais artificiais
title_fullStr Modelagem de povoamentos de eucalipto no nordeste da Bahia utilizando regressão e redes neurais artificiais
title_full_unstemmed Modelagem de povoamentos de eucalipto no nordeste da Bahia utilizando regressão e redes neurais artificiais
title_sort Modelagem de povoamentos de eucalipto no nordeste da Bahia utilizando regressão e redes neurais artificiais
author Dávila Vega, Andreina Epifanía
author_facet Dávila Vega, Andreina Epifanía
author_role author
dc.contributor.authorLattes.pt-BR.fl_str_mv http://lattes.cnpq.br/9807098068113617
dc.contributor.none.fl_str_mv Soares, Carlos Pedro Boechat
dc.contributor.author.fl_str_mv Dávila Vega, Andreina Epifanía
dc.contributor.advisor1.fl_str_mv Leite, Helio Garcia
contributor_str_mv Leite, Helio Garcia
dc.subject.pt-BR.fl_str_mv Eucalipto - Crescimento
Eucalipto - produção
Redes neurais artificiais
Mapa de produtividade
Eucalyptus
RNA
topic Eucalipto - Crescimento
Eucalipto - produção
Redes neurais artificiais
Mapa de produtividade
Eucalyptus
RNA
Manejo Florestal
dc.subject.cnpq.fl_str_mv Manejo Florestal
description O objetivo deste estudo foi avaliar a eficiência do emprego das redes neurais artificiais (RNA) na prognose do crescimento de povoamentos de eucalipto localizados ao Nordeste do Estado da Bahia, a partir de dados de Inventario Florestal Continuo (IFC) históricos de parcelas permanentes. Para o atendimento do objetivo foi necessária a construção de curvas de índice local, o que conseguiu delimitar três tipos de áreas produtivas segundo sua capacidade. A aplicação de um modelo de densidade de variável (Clutter) resultou em equações precisas para a estimação de volumes e áreas basais futuras, permitindo, mediante um modelo para estimar área basal em função do sítio, a construção de tabelas de produção para três classes de sítio (S1=35, S2=27 e S3=19), nas idades compreendidas entre 2 até 9 anos, definindo idades técnicas de corte (ITC), quando IMA=ICA, entre 4,8 e 5,2 anos para cada sítio. Comprovada a efetividade do modelo de crescimento e produção, em seguida foi avaliada a eficiência das RNA configuradas para estimar volumes futuros, treinadas com dados de IFC, climáticos e fisiográficos obtidos mediante procedimento de extração de informação das imagens raster das áreas de estudo. Essas comparações foram feitas por meio de estatísticas clássicas de validação e análises de resíduos. Com as RNA treinadas, foram estimados os volumes e IMAs para os 6 e 7 anos de idade. Este IMA constituiu a camada de saída no treinamento de uma segunda rede, em que as variáveis de entrada foram aquelas climáticas e fisiográficas. A rede treinada foi aplicada para espacializar a produtividade para as quatro áreas de estudo. O IMA aos 7 anos (IMA7) variou de 8,15 até 55,35 m3ha 1ano̵ 1, sendo os maiores localizados próximos ao litoral. A inteligência artificial (RNA) foi eficiente para a construção de mapas de produtividade. Esse tipo de mapa é útil para estudos visando definir novas áreas de implantação, ajudando na diminuição de riscos em novos investimentos das empresas para futuros projetos ou reformas.
publishDate 2018
dc.date.accessioned.fl_str_mv 2018-05-10T13:15:42Z
dc.date.available.fl_str_mv 2018-05-10T13:15:42Z
dc.date.issued.fl_str_mv 2018-02-23
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv DÁVILA VEGA, Andreina Epifanía. Modelagem de povoamentos de eucalipto no nordeste da Bahia utilizando regressão e redes neurais artificiais. 2018. 52f. Dissertação (Mestrado em Ciência Florestal) - Universidade Federal de Viçosa, Viçosa. 2018.
dc.identifier.uri.fl_str_mv http://www.locus.ufv.br/handle/123456789/19444
identifier_str_mv DÁVILA VEGA, Andreina Epifanía. Modelagem de povoamentos de eucalipto no nordeste da Bahia utilizando regressão e redes neurais artificiais. 2018. 52f. Dissertação (Mestrado em Ciência Florestal) - Universidade Federal de Viçosa, Viçosa. 2018.
url http://www.locus.ufv.br/handle/123456789/19444
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Viçosa
publisher.none.fl_str_mv Universidade Federal de Viçosa
dc.source.none.fl_str_mv reponame:LOCUS Repositório Institucional da UFV
instname:Universidade Federal de Viçosa (UFV)
instacron:UFV
instname_str Universidade Federal de Viçosa (UFV)
instacron_str UFV
institution UFV
reponame_str LOCUS Repositório Institucional da UFV
collection LOCUS Repositório Institucional da UFV
bitstream.url.fl_str_mv https://locus.ufv.br//bitstream/123456789/19444/1/texto%20completo.pdf
https://locus.ufv.br//bitstream/123456789/19444/2/license.txt
https://locus.ufv.br//bitstream/123456789/19444/3/texto%20completo.pdf.jpg
bitstream.checksum.fl_str_mv 238f87c924792bb6d204502227d520d3
8a4605be74aa9ea9d79846c1fba20a33
aca02c5574d2a1d3356e85230ef08621
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)
repository.mail.fl_str_mv fabiojreis@ufv.br
_version_ 1801213008586735616