Modelos para avaliação genética da produção de leite em múltiplas lactações
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | LOCUS Repositório Institucional da UFV |
Texto Completo: | http://dx.doi.org/10.1590/S0100-204X2015000400005 http://locus.ufv.br//handle/123456789/26075 |
Resumo: | O objetivo deste trabalho foi avaliar componentes de covariância e valores genéticos para produção de leite acumulada em até 305 dias, a partir dos dados das três primeiras lactações de vacas Gir. Foram analisados dados de 14.659 lactações, de 9.079 vacas, por meio dos modelos de repetibilidade, multicaracterístico (Mult) e de regressão aleatória com variância residual homogênea (MRAHo) ou heterogênea (MRAHe). A produção de leite foi considerada como característica distinta em cada lactação, no modelo Mult. Polinômios lineares foram utilizados nos modelos de regressão aleatória para ajuste das trajetórias médias e dos efeitos genético aditivo e de ambiente permanente individuais, de acordo com a ordem de parto. As médias a posteriori da herdabilidade foram semelhantes entre os diferentes modelos e lactações, e variaram entre 0,24 e 0,29. Os modelos Mult e MRAHe ajustaram-se melhor aos dados, uma vez que observou-se heterogeneidade de variâncias genéticas e residuais entre lactações. As correlações genéticas da produção acumulada de leite em até 305 dias nas três primeiras lactações foram próximas de 1,0; portanto, a seleção de reprodutores já pode ser feita a partir dos resultados da primeira lactação. Modelos de regressão aleatória com variâncias genéticas e residuais heterogêneas permitem modelar adequadamente as covariâncias das produções de leite acumuladas em múltiplas lactações e obter valores genéticos para seleção de reprodutores com base nos dados já da primeira lactação. |
id |
UFV_99249fc3eec4327089f3f0231a31656c |
---|---|
oai_identifier_str |
oai:locus.ufv.br:123456789/26075 |
network_acronym_str |
UFV |
network_name_str |
LOCUS Repositório Institucional da UFV |
repository_id_str |
2145 |
spelling |
Reis Filho, João CruzVerneque, Rui da SilvaTorres, Robledo de AlmeidaRibeiro, Virgínia Mara PereiraToral, Fabio Luiz Buranelo2019-07-04T13:34:08Z2019-07-04T13:34:08Z2015-041678-3921http://dx.doi.org/10.1590/S0100-204X2015000400005http://locus.ufv.br//handle/123456789/26075O objetivo deste trabalho foi avaliar componentes de covariância e valores genéticos para produção de leite acumulada em até 305 dias, a partir dos dados das três primeiras lactações de vacas Gir. Foram analisados dados de 14.659 lactações, de 9.079 vacas, por meio dos modelos de repetibilidade, multicaracterístico (Mult) e de regressão aleatória com variância residual homogênea (MRAHo) ou heterogênea (MRAHe). A produção de leite foi considerada como característica distinta em cada lactação, no modelo Mult. Polinômios lineares foram utilizados nos modelos de regressão aleatória para ajuste das trajetórias médias e dos efeitos genético aditivo e de ambiente permanente individuais, de acordo com a ordem de parto. As médias a posteriori da herdabilidade foram semelhantes entre os diferentes modelos e lactações, e variaram entre 0,24 e 0,29. Os modelos Mult e MRAHe ajustaram-se melhor aos dados, uma vez que observou-se heterogeneidade de variâncias genéticas e residuais entre lactações. As correlações genéticas da produção acumulada de leite em até 305 dias nas três primeiras lactações foram próximas de 1,0; portanto, a seleção de reprodutores já pode ser feita a partir dos resultados da primeira lactação. Modelos de regressão aleatória com variâncias genéticas e residuais heterogêneas permitem modelar adequadamente as covariâncias das produções de leite acumuladas em múltiplas lactações e obter valores genéticos para seleção de reprodutores com base nos dados já da primeira lactação.The objective of this work was to evaluate covariance components and breeding values for 305‐day cumulative milk yield with data from the first three lactations of Gyr cows. A total of 14,659 lactations of 9,079 cows were evaluated, using the models of repeatability, multiple‐trait (MT), and random regression with residual homoscedasticity (RRMHo) or heteroscedasticity (RRMHe). Milk yield was considered as a different trait in each lactation, in the MT model. Linear polynomials were used in random regression models to fit the mean trajectories and the additive genetic and permanent environment individual effects, according to calving order. Posteriori means for heritability were similar among different models and lactations, and varied from 0.24 to 0.29. The MT and RRMHe models had a better fit to the data, since heterogeneity was observed for genetic and residual variances between lactations. The genetic correlations of cumulative milk yield up to 305 days in the first three lactations were close to 1.0; therefore, the selection of reproducers can be made with data already from the first lactation. Random regression models with heterogenous genetic and residual variances allow for proper modeling of the covariances in cumulative milk yields in multiple lactations and for obtaining the genetic values to be used in the selection of reproducers, based on data already from the first lactation.porPesquisa Agropecuária Brasileirav. 50, n. 4, p. 298- 305, abr. 2015Bos indicusGir leiteiroModelo multicaracterísticoRegressão aleatóriaRepetibilidadeSeleção precoceDairy gyrMultiple‐trait modelRandom regressionRepeatabilityEarly selectionModelos para avaliação genética da produção de leite em múltiplas lactaçõesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfinfo:eu-repo/semantics/openAccessreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALartigo.pdfartigo.pdfartigoapplication/pdf483917https://locus.ufv.br//bitstream/123456789/26075/1/artigo.pdf51942fe24b3f2eaa41f72516081145f0MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://locus.ufv.br//bitstream/123456789/26075/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52123456789/260752019-07-04 12:12:34.731oai:locus.ufv.br:123456789/26075Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452019-07-04T15:12:34LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false |
dc.title.pt-BR.fl_str_mv |
Modelos para avaliação genética da produção de leite em múltiplas lactações |
title |
Modelos para avaliação genética da produção de leite em múltiplas lactações |
spellingShingle |
Modelos para avaliação genética da produção de leite em múltiplas lactações Reis Filho, João Cruz Bos indicus Gir leiteiro Modelo multicaracterístico Regressão aleatória Repetibilidade Seleção precoce Dairy gyr Multiple‐trait model Random regression Repeatability Early selection |
title_short |
Modelos para avaliação genética da produção de leite em múltiplas lactações |
title_full |
Modelos para avaliação genética da produção de leite em múltiplas lactações |
title_fullStr |
Modelos para avaliação genética da produção de leite em múltiplas lactações |
title_full_unstemmed |
Modelos para avaliação genética da produção de leite em múltiplas lactações |
title_sort |
Modelos para avaliação genética da produção de leite em múltiplas lactações |
author |
Reis Filho, João Cruz |
author_facet |
Reis Filho, João Cruz Verneque, Rui da Silva Torres, Robledo de Almeida Ribeiro, Virgínia Mara Pereira Toral, Fabio Luiz Buranelo |
author_role |
author |
author2 |
Verneque, Rui da Silva Torres, Robledo de Almeida Ribeiro, Virgínia Mara Pereira Toral, Fabio Luiz Buranelo |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Reis Filho, João Cruz Verneque, Rui da Silva Torres, Robledo de Almeida Ribeiro, Virgínia Mara Pereira Toral, Fabio Luiz Buranelo |
dc.subject.pt-BR.fl_str_mv |
Bos indicus Gir leiteiro Modelo multicaracterístico Regressão aleatória Repetibilidade Seleção precoce Dairy gyr Multiple‐trait model Random regression Repeatability Early selection |
topic |
Bos indicus Gir leiteiro Modelo multicaracterístico Regressão aleatória Repetibilidade Seleção precoce Dairy gyr Multiple‐trait model Random regression Repeatability Early selection |
description |
O objetivo deste trabalho foi avaliar componentes de covariância e valores genéticos para produção de leite acumulada em até 305 dias, a partir dos dados das três primeiras lactações de vacas Gir. Foram analisados dados de 14.659 lactações, de 9.079 vacas, por meio dos modelos de repetibilidade, multicaracterístico (Mult) e de regressão aleatória com variância residual homogênea (MRAHo) ou heterogênea (MRAHe). A produção de leite foi considerada como característica distinta em cada lactação, no modelo Mult. Polinômios lineares foram utilizados nos modelos de regressão aleatória para ajuste das trajetórias médias e dos efeitos genético aditivo e de ambiente permanente individuais, de acordo com a ordem de parto. As médias a posteriori da herdabilidade foram semelhantes entre os diferentes modelos e lactações, e variaram entre 0,24 e 0,29. Os modelos Mult e MRAHe ajustaram-se melhor aos dados, uma vez que observou-se heterogeneidade de variâncias genéticas e residuais entre lactações. As correlações genéticas da produção acumulada de leite em até 305 dias nas três primeiras lactações foram próximas de 1,0; portanto, a seleção de reprodutores já pode ser feita a partir dos resultados da primeira lactação. Modelos de regressão aleatória com variâncias genéticas e residuais heterogêneas permitem modelar adequadamente as covariâncias das produções de leite acumuladas em múltiplas lactações e obter valores genéticos para seleção de reprodutores com base nos dados já da primeira lactação. |
publishDate |
2015 |
dc.date.issued.fl_str_mv |
2015-04 |
dc.date.accessioned.fl_str_mv |
2019-07-04T13:34:08Z |
dc.date.available.fl_str_mv |
2019-07-04T13:34:08Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1590/S0100-204X2015000400005 http://locus.ufv.br//handle/123456789/26075 |
dc.identifier.issn.none.fl_str_mv |
1678-3921 |
identifier_str_mv |
1678-3921 |
url |
http://dx.doi.org/10.1590/S0100-204X2015000400005 http://locus.ufv.br//handle/123456789/26075 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.ispartofseries.pt-BR.fl_str_mv |
v. 50, n. 4, p. 298- 305, abr. 2015 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Pesquisa Agropecuária Brasileira |
publisher.none.fl_str_mv |
Pesquisa Agropecuária Brasileira |
dc.source.none.fl_str_mv |
reponame:LOCUS Repositório Institucional da UFV instname:Universidade Federal de Viçosa (UFV) instacron:UFV |
instname_str |
Universidade Federal de Viçosa (UFV) |
instacron_str |
UFV |
institution |
UFV |
reponame_str |
LOCUS Repositório Institucional da UFV |
collection |
LOCUS Repositório Institucional da UFV |
bitstream.url.fl_str_mv |
https://locus.ufv.br//bitstream/123456789/26075/1/artigo.pdf https://locus.ufv.br//bitstream/123456789/26075/2/license.txt |
bitstream.checksum.fl_str_mv |
51942fe24b3f2eaa41f72516081145f0 8a4605be74aa9ea9d79846c1fba20a33 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV) |
repository.mail.fl_str_mv |
fabiojreis@ufv.br |
_version_ |
1801212964000235520 |