The transcriptional landscape of basidiosporogenesis in mature Pisolithus microcarpus basidiocarp

Detalhes bibliográficos
Autor(a) principal: Pereira, Maíra de Freitas
Data de Publicação: 2017
Outros Autores: Campos, André Narvaes da Rocha, Anastacio, Thalita Cardoso, Morin, Emmanuelle, Brommonschenkel, Sérgio Hermínio, Martin, Francis, Kohler, Annegret, Costa, Maurício Dutra
Tipo de documento: Artigo
Idioma: eng
Título da fonte: LOCUS Repositório Institucional da UFV
Texto Completo: https://doi.org/10.1186/s12864-017-3545-5
http://www.locus.ufv.br/handle/123456789/12533
Resumo: Pisolithus microcarpus (Cooke & Massee) G. Cunn is a gasteromycete that produces closed basidiocarps in symbiosis with eucalypts and acacias. The fungus produces a complex basidiocarp composed of peridioles at different developmental stages and an upper layer of basidiospores free of the hyphae and ready for wind dispersal upon the rupture of the basidiocarp pellis. During basidiosporogenesis, a process that takes place inside the basidiocarp peridioles, a conspicuous reserve of fatty acids is present throughout development. While several previous studies have described basidiosporogenesis inside peridioles, very little is known about gene expression changes that may occur during this part of the fungal life cycle. The objective of this work was to analyze gene transcription during peridiole and basidiospore development, while focusing specifically on cell cycle progression and lipid metabolism. Throughout different developmental stages of the peridioles we analyzed, 737 genes were regulated between adjacent compartments (>5 fold, FDR-corrected p-value < 0.05) corresponding to 3.49% of the genes present in the P. microcarpus genome. We identified three clusters among the regulated genes which showed differential expression between the peridiole developmental stages and the basidiospores. During peridiole development, transcripts for proteins involved in cellular processes, signaling, and information storage were detected, notably those for coding transcription factors, DNA polymerase subunits, DNA repair proteins, and genes involved in chromatin structure. For both internal embedded basidiospores (hereto referred to as “Internal spores”, IS) and external free basidiospores (hereto referred to as “Free spores”, FS), upregulated transcripts were found to involve primary metabolism, particularly fatty acid metabolism (FA). High expression of transcripts related to β-oxidation and the glyoxylate shunt indicated that fatty acids served as a major carbon source for basidiosporogenesis. Our results show that basidiocarp formation in P. microcarpus involves a complex array of genes that are regulated throughout peridiole development. We identified waves of transcripts with coordinated regulation and identified transcription factors which may play a role in this regulation. This is the first work to describe gene expression patterns during basidiocarp formation in an ectomycorrhizal gasteromycete fungus and sheds light on genes that may play important roles in the developmental process.
id UFV_a43340d66233777a7bcff1ee41c6b440
oai_identifier_str oai:locus.ufv.br:123456789/12533
network_acronym_str UFV
network_name_str LOCUS Repositório Institucional da UFV
repository_id_str 2145
spelling Pereira, Maíra de FreitasCampos, André Narvaes da RochaAnastacio, Thalita CardosoMorin, EmmanuelleBrommonschenkel, Sérgio HermínioMartin, FrancisKohler, AnnegretCosta, Maurício Dutra2017-10-30T16:41:00Z2017-10-30T16:41:00Z2017-02-021471-2164https://doi.org/10.1186/s12864-017-3545-5http://www.locus.ufv.br/handle/123456789/12533Pisolithus microcarpus (Cooke & Massee) G. Cunn is a gasteromycete that produces closed basidiocarps in symbiosis with eucalypts and acacias. The fungus produces a complex basidiocarp composed of peridioles at different developmental stages and an upper layer of basidiospores free of the hyphae and ready for wind dispersal upon the rupture of the basidiocarp pellis. During basidiosporogenesis, a process that takes place inside the basidiocarp peridioles, a conspicuous reserve of fatty acids is present throughout development. While several previous studies have described basidiosporogenesis inside peridioles, very little is known about gene expression changes that may occur during this part of the fungal life cycle. The objective of this work was to analyze gene transcription during peridiole and basidiospore development, while focusing specifically on cell cycle progression and lipid metabolism. Throughout different developmental stages of the peridioles we analyzed, 737 genes were regulated between adjacent compartments (>5 fold, FDR-corrected p-value < 0.05) corresponding to 3.49% of the genes present in the P. microcarpus genome. We identified three clusters among the regulated genes which showed differential expression between the peridiole developmental stages and the basidiospores. During peridiole development, transcripts for proteins involved in cellular processes, signaling, and information storage were detected, notably those for coding transcription factors, DNA polymerase subunits, DNA repair proteins, and genes involved in chromatin structure. For both internal embedded basidiospores (hereto referred to as “Internal spores”, IS) and external free basidiospores (hereto referred to as “Free spores”, FS), upregulated transcripts were found to involve primary metabolism, particularly fatty acid metabolism (FA). High expression of transcripts related to β-oxidation and the glyoxylate shunt indicated that fatty acids served as a major carbon source for basidiosporogenesis. Our results show that basidiocarp formation in P. microcarpus involves a complex array of genes that are regulated throughout peridiole development. We identified waves of transcripts with coordinated regulation and identified transcription factors which may play a role in this regulation. This is the first work to describe gene expression patterns during basidiocarp formation in an ectomycorrhizal gasteromycete fungus and sheds light on genes that may play important roles in the developmental process.engBMC Genomics18:157, Feb. 2017Gene expressionPeridiole developmentSporesCell cycleFatty acid metabolismThe transcriptional landscape of basidiosporogenesis in mature Pisolithus microcarpus basidiocarpinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfinfo:eu-repo/semantics/openAccessreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALdocument.pdfdocument.pdftexto completoapplication/pdf6181293https://locus.ufv.br//bitstream/123456789/12533/1/document.pdf74d3edf6f2305695d061a31bdafa2397MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://locus.ufv.br//bitstream/123456789/12533/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILdocument.pdf.jpgdocument.pdf.jpgIM Thumbnailimage/jpeg5032https://locus.ufv.br//bitstream/123456789/12533/3/document.pdf.jpg511f26657d4fe79f7a504f837035b9afMD53123456789/125332017-10-30 22:01:14.046oai:locus.ufv.br:123456789/12533Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452017-10-31T01:01:14LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false
dc.title.en.fl_str_mv The transcriptional landscape of basidiosporogenesis in mature Pisolithus microcarpus basidiocarp
title The transcriptional landscape of basidiosporogenesis in mature Pisolithus microcarpus basidiocarp
spellingShingle The transcriptional landscape of basidiosporogenesis in mature Pisolithus microcarpus basidiocarp
Pereira, Maíra de Freitas
Gene expression
Peridiole development
Spores
Cell cycle
Fatty acid metabolism
title_short The transcriptional landscape of basidiosporogenesis in mature Pisolithus microcarpus basidiocarp
title_full The transcriptional landscape of basidiosporogenesis in mature Pisolithus microcarpus basidiocarp
title_fullStr The transcriptional landscape of basidiosporogenesis in mature Pisolithus microcarpus basidiocarp
title_full_unstemmed The transcriptional landscape of basidiosporogenesis in mature Pisolithus microcarpus basidiocarp
title_sort The transcriptional landscape of basidiosporogenesis in mature Pisolithus microcarpus basidiocarp
author Pereira, Maíra de Freitas
author_facet Pereira, Maíra de Freitas
Campos, André Narvaes da Rocha
Anastacio, Thalita Cardoso
Morin, Emmanuelle
Brommonschenkel, Sérgio Hermínio
Martin, Francis
Kohler, Annegret
Costa, Maurício Dutra
author_role author
author2 Campos, André Narvaes da Rocha
Anastacio, Thalita Cardoso
Morin, Emmanuelle
Brommonschenkel, Sérgio Hermínio
Martin, Francis
Kohler, Annegret
Costa, Maurício Dutra
author2_role author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Pereira, Maíra de Freitas
Campos, André Narvaes da Rocha
Anastacio, Thalita Cardoso
Morin, Emmanuelle
Brommonschenkel, Sérgio Hermínio
Martin, Francis
Kohler, Annegret
Costa, Maurício Dutra
dc.subject.pt-BR.fl_str_mv Gene expression
Peridiole development
Spores
Cell cycle
Fatty acid metabolism
topic Gene expression
Peridiole development
Spores
Cell cycle
Fatty acid metabolism
description Pisolithus microcarpus (Cooke & Massee) G. Cunn is a gasteromycete that produces closed basidiocarps in symbiosis with eucalypts and acacias. The fungus produces a complex basidiocarp composed of peridioles at different developmental stages and an upper layer of basidiospores free of the hyphae and ready for wind dispersal upon the rupture of the basidiocarp pellis. During basidiosporogenesis, a process that takes place inside the basidiocarp peridioles, a conspicuous reserve of fatty acids is present throughout development. While several previous studies have described basidiosporogenesis inside peridioles, very little is known about gene expression changes that may occur during this part of the fungal life cycle. The objective of this work was to analyze gene transcription during peridiole and basidiospore development, while focusing specifically on cell cycle progression and lipid metabolism. Throughout different developmental stages of the peridioles we analyzed, 737 genes were regulated between adjacent compartments (>5 fold, FDR-corrected p-value < 0.05) corresponding to 3.49% of the genes present in the P. microcarpus genome. We identified three clusters among the regulated genes which showed differential expression between the peridiole developmental stages and the basidiospores. During peridiole development, transcripts for proteins involved in cellular processes, signaling, and information storage were detected, notably those for coding transcription factors, DNA polymerase subunits, DNA repair proteins, and genes involved in chromatin structure. For both internal embedded basidiospores (hereto referred to as “Internal spores”, IS) and external free basidiospores (hereto referred to as “Free spores”, FS), upregulated transcripts were found to involve primary metabolism, particularly fatty acid metabolism (FA). High expression of transcripts related to β-oxidation and the glyoxylate shunt indicated that fatty acids served as a major carbon source for basidiosporogenesis. Our results show that basidiocarp formation in P. microcarpus involves a complex array of genes that are regulated throughout peridiole development. We identified waves of transcripts with coordinated regulation and identified transcription factors which may play a role in this regulation. This is the first work to describe gene expression patterns during basidiocarp formation in an ectomycorrhizal gasteromycete fungus and sheds light on genes that may play important roles in the developmental process.
publishDate 2017
dc.date.accessioned.fl_str_mv 2017-10-30T16:41:00Z
dc.date.available.fl_str_mv 2017-10-30T16:41:00Z
dc.date.issued.fl_str_mv 2017-02-02
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://doi.org/10.1186/s12864-017-3545-5
http://www.locus.ufv.br/handle/123456789/12533
dc.identifier.issn.none.fl_str_mv 1471-2164
identifier_str_mv 1471-2164
url https://doi.org/10.1186/s12864-017-3545-5
http://www.locus.ufv.br/handle/123456789/12533
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartofseries.pt-BR.fl_str_mv 18:157, Feb. 2017
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv BMC Genomics
publisher.none.fl_str_mv BMC Genomics
dc.source.none.fl_str_mv reponame:LOCUS Repositório Institucional da UFV
instname:Universidade Federal de Viçosa (UFV)
instacron:UFV
instname_str Universidade Federal de Viçosa (UFV)
instacron_str UFV
institution UFV
reponame_str LOCUS Repositório Institucional da UFV
collection LOCUS Repositório Institucional da UFV
bitstream.url.fl_str_mv https://locus.ufv.br//bitstream/123456789/12533/1/document.pdf
https://locus.ufv.br//bitstream/123456789/12533/2/license.txt
https://locus.ufv.br//bitstream/123456789/12533/3/document.pdf.jpg
bitstream.checksum.fl_str_mv 74d3edf6f2305695d061a31bdafa2397
8a4605be74aa9ea9d79846c1fba20a33
511f26657d4fe79f7a504f837035b9af
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)
repository.mail.fl_str_mv fabiojreis@ufv.br
_version_ 1801212844273827840