Redes neurais artificiais e modelos de regressão na predição de propriedades reológicas de méis brasileiros

Detalhes bibliográficos
Autor(a) principal: Silva, Vanelle Maria da
Data de Publicação: 2016
Tipo de documento: Tese
Idioma: por
Título da fonte: LOCUS Repositório Institucional da UFV
Texto Completo: https://locus.ufv.br//handle/123456789/30018
Resumo: As propriedades reológicas de méis têm uma importância prática para apicultores e indústrias. As relações entre propriedades físico-químicas e reológicas são sistemas não lineares complexos. Deste modo, redes neurais artificiais (RNAs) e modelos de regressão linear e não linear foram utilizados para a predição de propriedades reológicas de 40 méis brasileiros de diferentes origens florais, a partir de medidas de fácil obtenção. Uma caracterização reológica dos méis foi realizada por meio de testes de cisalhamento no estado estacionário para a determinação da viscosidade (η) em diferentes temperaturas (10 °C a 60 °C) e testes de cisalhamento oscilatório de pequenas amplitudes (COPA) para determinação dos parâmetros módulo elástico (G’), módulo viscoso (G’’) e viscosidade complexa (η*) em varreduras de temperatura (0 °C; 75 °C; 0 °C) e varreduras de frequência (0,1 Hz a 10 Hz) em diferentes temperaturas (10 °C a 60 °C). Todos os méis apresentaram comportamento como líquido nas temperaturas e no espectro mecânico avaliados. O modelo de Arrhenius foi o mais adequado na estimativa da η de todos os méis e da η* de alguns deles, sendo o modelo Williams-Landel-Ferry (WLF) o mais apropriado na predição da η* dos méis laranjeira, multifloral-sudeste e multifloral-sul. Modelos simplificados foram propostos na determinação da η e η* a partir do efeito combinado da temperatura e concentração, com coeficiente de determinação (R²) igual a 0,9540 e 0,9334, e erro (root mean square error - RMSE) igual a 8,00 e 10,44, para η e η*, respectivamente. Na estimativa da viscosidade (η) em medidas de cisalhamento no estado estacionário, uma RNA (modelo 1) com arquitetura 2-12-1 neurônios em suas camadas apresentou um bom desempenho na fase de teste, com RMSE e coeficiente de correlação (r) iguais a 0,0430 e 0,9681 respectivamente. Na predição dos parâmetros G’, G’’ e η* na varredura de temperatura durante aquecimento e resfriamento, RNAs com arquitetura 2-9-3 (modelo 2) e 2-3-3 (modelo 3), apresentaram RMSE iguais a 0,0261 e 0,0387, na fase de teste, respectivamente. Para todos os parâmetros determinados, modelos não lineares exponenciais apresentaram resultados equivalentes aos modelos 1, 2 e 3. Uma RNA com arquitetura 3-9-3 (modelo 4) apresentou RMSE e r, para G’ iguais a 0,0158 e 0,7301, para G’’ iguais a 0,0176 e 0,9581 e para η* iguais a 0,0407 e 0,9647, respectivamente, na fase de teste, para os dados de varredura de frequência. Estes resultados foram superiores aos obtidos por meio de modelos lineares múltiplos de segunda ordem. A obtenção de todos os modelos representa uma importante aplicação para o processamento de méis e de produtos à base de mel, visto que tais propriedades são essenciais nos cálculos de engenharia e no controle de qualidade dos produtos.
id UFV_b27edb16747d67f2c310d7b4cd90bc4a
oai_identifier_str oai:locus.ufv.br:123456789/30018
network_acronym_str UFV
network_name_str LOCUS Repositório Institucional da UFV
repository_id_str 2145
spelling Lacerda, Wilian SoaresSilva, Vanelle Maria dahttp://lattes.cnpq.br/1072475374738912Resende, Jaime Vilela de2022-10-03T16:47:44Z2022-10-03T16:47:44Z2016-07-01Silva,, Vanelle Maria da. Redes neurais artificiais e modelos de regressão na predição de propriedades reológicas de méis brasileiros. 2016. 153 f. Tese (Doutorado em Ciência de Alimentos) - Universidade Federal de Lavras, Lavras. 2016.https://locus.ufv.br//handle/123456789/30018As propriedades reológicas de méis têm uma importância prática para apicultores e indústrias. As relações entre propriedades físico-químicas e reológicas são sistemas não lineares complexos. Deste modo, redes neurais artificiais (RNAs) e modelos de regressão linear e não linear foram utilizados para a predição de propriedades reológicas de 40 méis brasileiros de diferentes origens florais, a partir de medidas de fácil obtenção. Uma caracterização reológica dos méis foi realizada por meio de testes de cisalhamento no estado estacionário para a determinação da viscosidade (η) em diferentes temperaturas (10 °C a 60 °C) e testes de cisalhamento oscilatório de pequenas amplitudes (COPA) para determinação dos parâmetros módulo elástico (G’), módulo viscoso (G’’) e viscosidade complexa (η*) em varreduras de temperatura (0 °C; 75 °C; 0 °C) e varreduras de frequência (0,1 Hz a 10 Hz) em diferentes temperaturas (10 °C a 60 °C). Todos os méis apresentaram comportamento como líquido nas temperaturas e no espectro mecânico avaliados. O modelo de Arrhenius foi o mais adequado na estimativa da η de todos os méis e da η* de alguns deles, sendo o modelo Williams-Landel-Ferry (WLF) o mais apropriado na predição da η* dos méis laranjeira, multifloral-sudeste e multifloral-sul. Modelos simplificados foram propostos na determinação da η e η* a partir do efeito combinado da temperatura e concentração, com coeficiente de determinação (R²) igual a 0,9540 e 0,9334, e erro (root mean square error - RMSE) igual a 8,00 e 10,44, para η e η*, respectivamente. Na estimativa da viscosidade (η) em medidas de cisalhamento no estado estacionário, uma RNA (modelo 1) com arquitetura 2-12-1 neurônios em suas camadas apresentou um bom desempenho na fase de teste, com RMSE e coeficiente de correlação (r) iguais a 0,0430 e 0,9681 respectivamente. Na predição dos parâmetros G’, G’’ e η* na varredura de temperatura durante aquecimento e resfriamento, RNAs com arquitetura 2-9-3 (modelo 2) e 2-3-3 (modelo 3), apresentaram RMSE iguais a 0,0261 e 0,0387, na fase de teste, respectivamente. Para todos os parâmetros determinados, modelos não lineares exponenciais apresentaram resultados equivalentes aos modelos 1, 2 e 3. Uma RNA com arquitetura 3-9-3 (modelo 4) apresentou RMSE e r, para G’ iguais a 0,0158 e 0,7301, para G’’ iguais a 0,0176 e 0,9581 e para η* iguais a 0,0407 e 0,9647, respectivamente, na fase de teste, para os dados de varredura de frequência. Estes resultados foram superiores aos obtidos por meio de modelos lineares múltiplos de segunda ordem. A obtenção de todos os modelos representa uma importante aplicação para o processamento de méis e de produtos à base de mel, visto que tais propriedades são essenciais nos cálculos de engenharia e no controle de qualidade dos produtos.The rheological properties of honey are of practical importance for beekeepers and industries, since their determination allows for processing and quality control of honey. The relationships between physico-chemical and rheological properties are considered complex nonlinear systems. Therefore, artificial neural networks (ANNs) and linear and non-linear regression models were used to predict the rheological properties of 40 Brazilian honeys from different floral sources based on easily obtainable measurements. A rheological characterization of honeys was performed by means of shear tests at steady state for determining the viscosity (η) at different temperatures (10°C to 60°C) and small amplitude oscillatory shear (SAOS) testing for determining the parameters storage modulus (G’), loss modulus (G’’) and complex viscosity (η*) in temperature scans (0°C75°C-0°C) and frequency scans (0.1 Hz to 10 Hz) at different temperatures (10°C to 60°C). All honeys showed liquid behavior at the evaluated temperatures and mechanical spectra. The Arrhenius model was the most appropriate for estimation of η for all honeys and η* for some of them, where the Williams-Landel-Ferry (WLF) model was the most appropriate for predicting η* of the orange blosson, multi-southest and multi-southern honeys. Simplified models were proposed to determine η and η* from the combined effect of temperature and concentration, which showed coefficient of determination (R²) equal to 0.9540 and 0.9334, and root mean square error (RMSE) equal to 8.00 and 10.44 for η and η*, respectively. In estimating the viscosity (η) from shear measurements at steady state, an ANN (model 1) with architecture of 2-12-1 neurons in its layers showed good performance in the test phase, with RMSE and correlation coefficient (r) values equal to 0.0430 and 0.9681, respectively. In prediction of the parameters G’, G’’ and η* from the temperature scans during heating and cooling, ANNs with architectures of 2-9-3 (model 2) and 2-3-3 (model 3) presented RMSE values equal to 0.0261 and 0.0387 in the test phase, respectively. For all the determined parameters, nonlinear exponential models showed similar results to models 1, 2 and 3. An ANN with 3-9-3 architecture (model 4) presented RMSE and r values for G’ equal to 0.0158 and 0.7301, for G’’ equal to 0.0176 and 0.9581 and for η* equal to 0.0407 and 0.9647, respectively, in the test phase for the frequency scan data. These results were far superior to those obtained using second order multiple linear models. The acquisition of all models is an important application for the processing of honey and honey-based products, since these properties are essential in engineering, quality control and product shelf life calculationsporUniversidade Federal de LavrasCiência dos AlimentosRedes Neurais ArtificiaisRegressão não linearMelQualidadeCiência de AlimentosRedes neurais artificiais e modelos de regressão na predição de propriedades reológicas de méis brasileirosinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisUniversidade Federal de LavrasUFLA - Departamento de Ciência dos AlimentosDoutor em Ciência dos AlimentosLavras - MG2016-07-01Doutoradoinfo:eu-repo/semantics/openAccessreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALtexto completo.pdftexto completo.pdftexto completoapplication/pdf2637416https://locus.ufv.br//bitstream/123456789/30018/3/texto%20completo.pdf8c538da0835ef24c44dbdca8053354b0MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://locus.ufv.br//bitstream/123456789/30018/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52123456789/300182022-11-07 08:03:06.478oai:locus.ufv.br:123456789/30018Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452022-11-07T11:03:06LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false
dc.title.pt-BR.fl_str_mv Redes neurais artificiais e modelos de regressão na predição de propriedades reológicas de méis brasileiros
title Redes neurais artificiais e modelos de regressão na predição de propriedades reológicas de méis brasileiros
spellingShingle Redes neurais artificiais e modelos de regressão na predição de propriedades reológicas de méis brasileiros
Silva, Vanelle Maria da
Redes Neurais Artificiais
Regressão não linear
Mel
Qualidade
Ciência de Alimentos
title_short Redes neurais artificiais e modelos de regressão na predição de propriedades reológicas de méis brasileiros
title_full Redes neurais artificiais e modelos de regressão na predição de propriedades reológicas de méis brasileiros
title_fullStr Redes neurais artificiais e modelos de regressão na predição de propriedades reológicas de méis brasileiros
title_full_unstemmed Redes neurais artificiais e modelos de regressão na predição de propriedades reológicas de méis brasileiros
title_sort Redes neurais artificiais e modelos de regressão na predição de propriedades reológicas de méis brasileiros
author Silva, Vanelle Maria da
author_facet Silva, Vanelle Maria da
author_role author
dc.contributor.authorLattes.pt-BR.fl_str_mv http://lattes.cnpq.br/1072475374738912
dc.contributor.none.fl_str_mv Lacerda, Wilian Soares
dc.contributor.author.fl_str_mv Silva, Vanelle Maria da
dc.contributor.advisor1.fl_str_mv Resende, Jaime Vilela de
contributor_str_mv Resende, Jaime Vilela de
dc.subject.pt-BR.fl_str_mv Redes Neurais Artificiais
Regressão não linear
Mel
Qualidade
topic Redes Neurais Artificiais
Regressão não linear
Mel
Qualidade
Ciência de Alimentos
dc.subject.cnpq.fl_str_mv Ciência de Alimentos
description As propriedades reológicas de méis têm uma importância prática para apicultores e indústrias. As relações entre propriedades físico-químicas e reológicas são sistemas não lineares complexos. Deste modo, redes neurais artificiais (RNAs) e modelos de regressão linear e não linear foram utilizados para a predição de propriedades reológicas de 40 méis brasileiros de diferentes origens florais, a partir de medidas de fácil obtenção. Uma caracterização reológica dos méis foi realizada por meio de testes de cisalhamento no estado estacionário para a determinação da viscosidade (η) em diferentes temperaturas (10 °C a 60 °C) e testes de cisalhamento oscilatório de pequenas amplitudes (COPA) para determinação dos parâmetros módulo elástico (G’), módulo viscoso (G’’) e viscosidade complexa (η*) em varreduras de temperatura (0 °C; 75 °C; 0 °C) e varreduras de frequência (0,1 Hz a 10 Hz) em diferentes temperaturas (10 °C a 60 °C). Todos os méis apresentaram comportamento como líquido nas temperaturas e no espectro mecânico avaliados. O modelo de Arrhenius foi o mais adequado na estimativa da η de todos os méis e da η* de alguns deles, sendo o modelo Williams-Landel-Ferry (WLF) o mais apropriado na predição da η* dos méis laranjeira, multifloral-sudeste e multifloral-sul. Modelos simplificados foram propostos na determinação da η e η* a partir do efeito combinado da temperatura e concentração, com coeficiente de determinação (R²) igual a 0,9540 e 0,9334, e erro (root mean square error - RMSE) igual a 8,00 e 10,44, para η e η*, respectivamente. Na estimativa da viscosidade (η) em medidas de cisalhamento no estado estacionário, uma RNA (modelo 1) com arquitetura 2-12-1 neurônios em suas camadas apresentou um bom desempenho na fase de teste, com RMSE e coeficiente de correlação (r) iguais a 0,0430 e 0,9681 respectivamente. Na predição dos parâmetros G’, G’’ e η* na varredura de temperatura durante aquecimento e resfriamento, RNAs com arquitetura 2-9-3 (modelo 2) e 2-3-3 (modelo 3), apresentaram RMSE iguais a 0,0261 e 0,0387, na fase de teste, respectivamente. Para todos os parâmetros determinados, modelos não lineares exponenciais apresentaram resultados equivalentes aos modelos 1, 2 e 3. Uma RNA com arquitetura 3-9-3 (modelo 4) apresentou RMSE e r, para G’ iguais a 0,0158 e 0,7301, para G’’ iguais a 0,0176 e 0,9581 e para η* iguais a 0,0407 e 0,9647, respectivamente, na fase de teste, para os dados de varredura de frequência. Estes resultados foram superiores aos obtidos por meio de modelos lineares múltiplos de segunda ordem. A obtenção de todos os modelos representa uma importante aplicação para o processamento de méis e de produtos à base de mel, visto que tais propriedades são essenciais nos cálculos de engenharia e no controle de qualidade dos produtos.
publishDate 2016
dc.date.issued.fl_str_mv 2016-07-01
dc.date.accessioned.fl_str_mv 2022-10-03T16:47:44Z
dc.date.available.fl_str_mv 2022-10-03T16:47:44Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv Silva,, Vanelle Maria da. Redes neurais artificiais e modelos de regressão na predição de propriedades reológicas de méis brasileiros. 2016. 153 f. Tese (Doutorado em Ciência de Alimentos) - Universidade Federal de Lavras, Lavras. 2016.
dc.identifier.uri.fl_str_mv https://locus.ufv.br//handle/123456789/30018
identifier_str_mv Silva,, Vanelle Maria da. Redes neurais artificiais e modelos de regressão na predição de propriedades reológicas de méis brasileiros. 2016. 153 f. Tese (Doutorado em Ciência de Alimentos) - Universidade Federal de Lavras, Lavras. 2016.
url https://locus.ufv.br//handle/123456789/30018
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Lavras
dc.publisher.program.fl_str_mv Ciência dos Alimentos
publisher.none.fl_str_mv Universidade Federal de Lavras
dc.source.none.fl_str_mv reponame:LOCUS Repositório Institucional da UFV
instname:Universidade Federal de Viçosa (UFV)
instacron:UFV
instname_str Universidade Federal de Viçosa (UFV)
instacron_str UFV
institution UFV
reponame_str LOCUS Repositório Institucional da UFV
collection LOCUS Repositório Institucional da UFV
bitstream.url.fl_str_mv https://locus.ufv.br//bitstream/123456789/30018/3/texto%20completo.pdf
https://locus.ufv.br//bitstream/123456789/30018/2/license.txt
bitstream.checksum.fl_str_mv 8c538da0835ef24c44dbdca8053354b0
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)
repository.mail.fl_str_mv fabiojreis@ufv.br
_version_ 1801213032133558272