A note on directional wavelet transform: distributional boundary values and analytic wavefront sets
Autor(a) principal: | |
---|---|
Data de Publicação: | 2012 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | LOCUS Repositório Institucional da UFV |
Texto Completo: | http://dx.doi.org/10.1155/2012/758694 http://www.locus.ufv.br/handle/123456789/17483 |
Resumo: | By using a particular class of directional wavelets (namely, the conical wavelets, which are wavelets strictly supported in a proper convex cone in the -space of frequencies), in this paper, it is shown that a tempered distribution is obtained as a finite sum of boundary values of analytic functions arising from the complexification of the translational parameter of the wavelet transform. Moreover, we show that for a given distribution , the continuous wavelet transform of with respect to a conical wavelet is defined in such a way that the directional wavelet transform of yields a function on phase space whose high-frequency singularities are precisely the elements in the analytic wavefront set of . |
id |
UFV_bc690fb5266cb98d704ae75cdeb86125 |
---|---|
oai_identifier_str |
oai:locus.ufv.br:123456789/17483 |
network_acronym_str |
UFV |
network_name_str |
LOCUS Repositório Institucional da UFV |
repository_id_str |
2145 |
spelling |
Apolonio, Felipe A.Franco, Daniel H. T.Fagundes, Fábio N.2018-02-07T17:48:39Z2018-02-07T17:48:39Z2012-04-191687-0425http://dx.doi.org/10.1155/2012/758694http://www.locus.ufv.br/handle/123456789/17483By using a particular class of directional wavelets (namely, the conical wavelets, which are wavelets strictly supported in a proper convex cone in the -space of frequencies), in this paper, it is shown that a tempered distribution is obtained as a finite sum of boundary values of analytic functions arising from the complexification of the translational parameter of the wavelet transform. Moreover, we show that for a given distribution , the continuous wavelet transform of with respect to a conical wavelet is defined in such a way that the directional wavelet transform of yields a function on phase space whose high-frequency singularities are precisely the elements in the analytic wavefront set of .engInternational Journal of Mathematics and Mathematical SciencesVolume 2012, Article ID 758694, 2012Directional wavelet transformDistributional boundary valuesWavefront SetsA note on directional wavelet transform: distributional boundary values and analytic wavefront setsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfinfo:eu-repo/semantics/openAccessreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALartigo.pdfartigo.pdfTexto completoapplication/pdf1941174https://locus.ufv.br//bitstream/123456789/17483/1/artigo.pdf291f1947b51e0a86db0fe5d409d64b30MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://locus.ufv.br//bitstream/123456789/17483/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILartigo.pdf.jpgartigo.pdf.jpgIM Thumbnailimage/jpeg4714https://locus.ufv.br//bitstream/123456789/17483/3/artigo.pdf.jpg2ae86abbb5631ff92766c23b8bbfd4efMD53123456789/174832018-02-07 22:01:32.062oai:locus.ufv.br:123456789/17483Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452018-02-08T01:01:32LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false |
dc.title.en.fl_str_mv |
A note on directional wavelet transform: distributional boundary values and analytic wavefront sets |
title |
A note on directional wavelet transform: distributional boundary values and analytic wavefront sets |
spellingShingle |
A note on directional wavelet transform: distributional boundary values and analytic wavefront sets Apolonio, Felipe A. Directional wavelet transform Distributional boundary values Wavefront Sets |
title_short |
A note on directional wavelet transform: distributional boundary values and analytic wavefront sets |
title_full |
A note on directional wavelet transform: distributional boundary values and analytic wavefront sets |
title_fullStr |
A note on directional wavelet transform: distributional boundary values and analytic wavefront sets |
title_full_unstemmed |
A note on directional wavelet transform: distributional boundary values and analytic wavefront sets |
title_sort |
A note on directional wavelet transform: distributional boundary values and analytic wavefront sets |
author |
Apolonio, Felipe A. |
author_facet |
Apolonio, Felipe A. Franco, Daniel H. T. Fagundes, Fábio N. |
author_role |
author |
author2 |
Franco, Daniel H. T. Fagundes, Fábio N. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Apolonio, Felipe A. Franco, Daniel H. T. Fagundes, Fábio N. |
dc.subject.pt-BR.fl_str_mv |
Directional wavelet transform Distributional boundary values Wavefront Sets |
topic |
Directional wavelet transform Distributional boundary values Wavefront Sets |
description |
By using a particular class of directional wavelets (namely, the conical wavelets, which are wavelets strictly supported in a proper convex cone in the -space of frequencies), in this paper, it is shown that a tempered distribution is obtained as a finite sum of boundary values of analytic functions arising from the complexification of the translational parameter of the wavelet transform. Moreover, we show that for a given distribution , the continuous wavelet transform of with respect to a conical wavelet is defined in such a way that the directional wavelet transform of yields a function on phase space whose high-frequency singularities are precisely the elements in the analytic wavefront set of . |
publishDate |
2012 |
dc.date.issued.fl_str_mv |
2012-04-19 |
dc.date.accessioned.fl_str_mv |
2018-02-07T17:48:39Z |
dc.date.available.fl_str_mv |
2018-02-07T17:48:39Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1155/2012/758694 http://www.locus.ufv.br/handle/123456789/17483 |
dc.identifier.issn.none.fl_str_mv |
1687-0425 |
identifier_str_mv |
1687-0425 |
url |
http://dx.doi.org/10.1155/2012/758694 http://www.locus.ufv.br/handle/123456789/17483 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofseries.pt-BR.fl_str_mv |
Volume 2012, Article ID 758694, 2012 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
International Journal of Mathematics and Mathematical Sciences |
publisher.none.fl_str_mv |
International Journal of Mathematics and Mathematical Sciences |
dc.source.none.fl_str_mv |
reponame:LOCUS Repositório Institucional da UFV instname:Universidade Federal de Viçosa (UFV) instacron:UFV |
instname_str |
Universidade Federal de Viçosa (UFV) |
instacron_str |
UFV |
institution |
UFV |
reponame_str |
LOCUS Repositório Institucional da UFV |
collection |
LOCUS Repositório Institucional da UFV |
bitstream.url.fl_str_mv |
https://locus.ufv.br//bitstream/123456789/17483/1/artigo.pdf https://locus.ufv.br//bitstream/123456789/17483/2/license.txt https://locus.ufv.br//bitstream/123456789/17483/3/artigo.pdf.jpg |
bitstream.checksum.fl_str_mv |
291f1947b51e0a86db0fe5d409d64b30 8a4605be74aa9ea9d79846c1fba20a33 2ae86abbb5631ff92766c23b8bbfd4ef |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV) |
repository.mail.fl_str_mv |
fabiojreis@ufv.br |
_version_ |
1801212909862256640 |