A note on directional wavelet transform: distributional boundary values and analytic wavefront sets

Detalhes bibliográficos
Autor(a) principal: Apolonio, Felipe A.
Data de Publicação: 2012
Outros Autores: Franco, Daniel H. T., Fagundes, Fábio N.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: LOCUS Repositório Institucional da UFV
Texto Completo: http://dx.doi.org/10.1155/2012/758694
http://www.locus.ufv.br/handle/123456789/17483
Resumo: By using a particular class of directional wavelets (namely, the conical wavelets, which are wavelets strictly supported in a proper convex cone in the -space of frequencies), in this paper, it is shown that a tempered distribution is obtained as a finite sum of boundary values of analytic functions arising from the complexification of the translational parameter of the wavelet transform. Moreover, we show that for a given distribution , the continuous wavelet transform of with respect to a conical wavelet is defined in such a way that the directional wavelet transform of yields a function on phase space whose high-frequency singularities are precisely the elements in the analytic wavefront set of .
id UFV_bc690fb5266cb98d704ae75cdeb86125
oai_identifier_str oai:locus.ufv.br:123456789/17483
network_acronym_str UFV
network_name_str LOCUS Repositório Institucional da UFV
repository_id_str 2145
spelling Apolonio, Felipe A.Franco, Daniel H. T.Fagundes, Fábio N.2018-02-07T17:48:39Z2018-02-07T17:48:39Z2012-04-191687-0425http://dx.doi.org/10.1155/2012/758694http://www.locus.ufv.br/handle/123456789/17483By using a particular class of directional wavelets (namely, the conical wavelets, which are wavelets strictly supported in a proper convex cone in the -space of frequencies), in this paper, it is shown that a tempered distribution is obtained as a finite sum of boundary values of analytic functions arising from the complexification of the translational parameter of the wavelet transform. Moreover, we show that for a given distribution , the continuous wavelet transform of with respect to a conical wavelet is defined in such a way that the directional wavelet transform of yields a function on phase space whose high-frequency singularities are precisely the elements in the analytic wavefront set of .engInternational Journal of Mathematics and Mathematical SciencesVolume 2012, Article ID 758694, 2012Directional wavelet transformDistributional boundary valuesWavefront SetsA note on directional wavelet transform: distributional boundary values and analytic wavefront setsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfinfo:eu-repo/semantics/openAccessreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALartigo.pdfartigo.pdfTexto completoapplication/pdf1941174https://locus.ufv.br//bitstream/123456789/17483/1/artigo.pdf291f1947b51e0a86db0fe5d409d64b30MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://locus.ufv.br//bitstream/123456789/17483/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILartigo.pdf.jpgartigo.pdf.jpgIM Thumbnailimage/jpeg4714https://locus.ufv.br//bitstream/123456789/17483/3/artigo.pdf.jpg2ae86abbb5631ff92766c23b8bbfd4efMD53123456789/174832018-02-07 22:01:32.062oai:locus.ufv.br:123456789/17483Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452018-02-08T01:01:32LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false
dc.title.en.fl_str_mv A note on directional wavelet transform: distributional boundary values and analytic wavefront sets
title A note on directional wavelet transform: distributional boundary values and analytic wavefront sets
spellingShingle A note on directional wavelet transform: distributional boundary values and analytic wavefront sets
Apolonio, Felipe A.
Directional wavelet transform
Distributional boundary values
Wavefront Sets
title_short A note on directional wavelet transform: distributional boundary values and analytic wavefront sets
title_full A note on directional wavelet transform: distributional boundary values and analytic wavefront sets
title_fullStr A note on directional wavelet transform: distributional boundary values and analytic wavefront sets
title_full_unstemmed A note on directional wavelet transform: distributional boundary values and analytic wavefront sets
title_sort A note on directional wavelet transform: distributional boundary values and analytic wavefront sets
author Apolonio, Felipe A.
author_facet Apolonio, Felipe A.
Franco, Daniel H. T.
Fagundes, Fábio N.
author_role author
author2 Franco, Daniel H. T.
Fagundes, Fábio N.
author2_role author
author
dc.contributor.author.fl_str_mv Apolonio, Felipe A.
Franco, Daniel H. T.
Fagundes, Fábio N.
dc.subject.pt-BR.fl_str_mv Directional wavelet transform
Distributional boundary values
Wavefront Sets
topic Directional wavelet transform
Distributional boundary values
Wavefront Sets
description By using a particular class of directional wavelets (namely, the conical wavelets, which are wavelets strictly supported in a proper convex cone in the -space of frequencies), in this paper, it is shown that a tempered distribution is obtained as a finite sum of boundary values of analytic functions arising from the complexification of the translational parameter of the wavelet transform. Moreover, we show that for a given distribution , the continuous wavelet transform of with respect to a conical wavelet is defined in such a way that the directional wavelet transform of yields a function on phase space whose high-frequency singularities are precisely the elements in the analytic wavefront set of .
publishDate 2012
dc.date.issued.fl_str_mv 2012-04-19
dc.date.accessioned.fl_str_mv 2018-02-07T17:48:39Z
dc.date.available.fl_str_mv 2018-02-07T17:48:39Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1155/2012/758694
http://www.locus.ufv.br/handle/123456789/17483
dc.identifier.issn.none.fl_str_mv 1687-0425
identifier_str_mv 1687-0425
url http://dx.doi.org/10.1155/2012/758694
http://www.locus.ufv.br/handle/123456789/17483
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartofseries.pt-BR.fl_str_mv Volume 2012, Article ID 758694, 2012
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv International Journal of Mathematics and Mathematical Sciences
publisher.none.fl_str_mv International Journal of Mathematics and Mathematical Sciences
dc.source.none.fl_str_mv reponame:LOCUS Repositório Institucional da UFV
instname:Universidade Federal de Viçosa (UFV)
instacron:UFV
instname_str Universidade Federal de Viçosa (UFV)
instacron_str UFV
institution UFV
reponame_str LOCUS Repositório Institucional da UFV
collection LOCUS Repositório Institucional da UFV
bitstream.url.fl_str_mv https://locus.ufv.br//bitstream/123456789/17483/1/artigo.pdf
https://locus.ufv.br//bitstream/123456789/17483/2/license.txt
https://locus.ufv.br//bitstream/123456789/17483/3/artigo.pdf.jpg
bitstream.checksum.fl_str_mv 291f1947b51e0a86db0fe5d409d64b30
8a4605be74aa9ea9d79846c1fba20a33
2ae86abbb5631ff92766c23b8bbfd4ef
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)
repository.mail.fl_str_mv fabiojreis@ufv.br
_version_ 1801212909862256640