Intra-genotypic competition of Eucalyptus clones generated by environmental heterogeneity can optimize productivity in forest stands

Detalhes bibliográficos
Autor(a) principal: Resende, Rafael T.
Data de Publicação: 2016
Outros Autores: Marcatti, Gustavo E., Pinto, Danielle S., Takahashi, Elizabete K., Cruz, Cosme Damião, Resende, Marcos Deon V.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: LOCUS Repositório Institucional da UFV
Texto Completo: https://doi.org/10.1016/j.foreco.2016.08.041
http://www.locus.ufv.br/handle/123456789/21607
Resumo: The growth structure of Eucalyptus plantations is the result of site environment, genetic material, and different types of interaction between neighboring plants. It is well known that sites that are more homogeneous result in greater forest productivity. However, additional factors inherent in the micro- environment or the quality of cuttings can lead to heterogeneous clonal biomass at the end of the rotation cycle. This study of the growth patterns in commercial stands of Eucalyptus clones had two aims: (i) to determine whether environmental heterogeneity causes competition among genetically identical individuals and (ii) to validate the occurrence of intra-genotypic competition, revealing the potential relationship with forest productivity. The present study was developed based on two linear mixed models: a non-genetic model, which accounts for spatial autocorrelation and is used to estimate the effects of competition between neighboring trees into the single clone plots; and a genetic model to infer the nature of the clonal competition. Three hundred and six square plots containing one hundred plants from eight experiments using a randomized block design, with three replications, were evaluated. The experiments were positioned in different environmental conditions by combining two different plant spacings and two altitude elevations. Using the path analysis procedure, we verified that there were significant direct effects of competition according to the proximity of the trees in the plot. In addition, trees that were more distant caused indirect effects of competition through nearby trees. Stands with uniform growth conditions (measured by residual autocorrelation parameters) actually caused higher productivity. The results from the genetic correlations of intra-genotypic competition and productivity showed that the less competitive clones were always less productive, regardless of the experimental condition. The more competitively aggressive clones could optimize their productivity when planted in sites with high residual levels, reaching productivities similar to those of homogeneous stands. This suggests that the implementation of certain silviculture techniques, seeking to increase site uniformity, is less relevant to these clones. The selection and use of these clones might be useful for large companies, because they offer the opportunity to achieve high productivity, and for smaller producers who do not have access to the silvicultural quality used by large companies.
id UFV_bd2b6929931a3693fb290bebf13867e2
oai_identifier_str oai:locus.ufv.br:123456789/21607
network_acronym_str UFV
network_name_str LOCUS Repositório Institucional da UFV
repository_id_str 2145
spelling Resende, Rafael T.Marcatti, Gustavo E.Pinto, Danielle S.Takahashi, Elizabete K.Cruz, Cosme DamiãoResende, Marcos Deon V.2018-09-04T11:04:18Z2018-09-04T11:04:18Z2016-11-1503781127https://doi.org/10.1016/j.foreco.2016.08.041http://www.locus.ufv.br/handle/123456789/21607The growth structure of Eucalyptus plantations is the result of site environment, genetic material, and different types of interaction between neighboring plants. It is well known that sites that are more homogeneous result in greater forest productivity. However, additional factors inherent in the micro- environment or the quality of cuttings can lead to heterogeneous clonal biomass at the end of the rotation cycle. This study of the growth patterns in commercial stands of Eucalyptus clones had two aims: (i) to determine whether environmental heterogeneity causes competition among genetically identical individuals and (ii) to validate the occurrence of intra-genotypic competition, revealing the potential relationship with forest productivity. The present study was developed based on two linear mixed models: a non-genetic model, which accounts for spatial autocorrelation and is used to estimate the effects of competition between neighboring trees into the single clone plots; and a genetic model to infer the nature of the clonal competition. Three hundred and six square plots containing one hundred plants from eight experiments using a randomized block design, with three replications, were evaluated. The experiments were positioned in different environmental conditions by combining two different plant spacings and two altitude elevations. Using the path analysis procedure, we verified that there were significant direct effects of competition according to the proximity of the trees in the plot. In addition, trees that were more distant caused indirect effects of competition through nearby trees. Stands with uniform growth conditions (measured by residual autocorrelation parameters) actually caused higher productivity. The results from the genetic correlations of intra-genotypic competition and productivity showed that the less competitive clones were always less productive, regardless of the experimental condition. The more competitively aggressive clones could optimize their productivity when planted in sites with high residual levels, reaching productivities similar to those of homogeneous stands. This suggests that the implementation of certain silviculture techniques, seeking to increase site uniformity, is less relevant to these clones. The selection and use of these clones might be useful for large companies, because they offer the opportunity to achieve high productivity, and for smaller producers who do not have access to the silvicultural quality used by large companies.engForest Ecology and Managementv. 380, p. 50- 58, nov. 2016Elsevier B.V.info:eu-repo/semantics/openAccessClonal competitionMixed modelsForest breedingPlant spacingStand productivityIntra-genotypic competition of Eucalyptus clones generated by environmental heterogeneity can optimize productivity in forest standsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALartigo.pdfartigo.pdftexto completoapplication/pdf840690https://locus.ufv.br//bitstream/123456789/21607/1/artigo.pdf52d5c9fe3031274652dd9dcf16f2a9a4MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://locus.ufv.br//bitstream/123456789/21607/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILartigo.pdf.jpgartigo.pdf.jpgIM Thumbnailimage/jpeg5052https://locus.ufv.br//bitstream/123456789/21607/3/artigo.pdf.jpg423065a633a3e2fb5769ea7a1f103361MD53123456789/216072018-09-04 23:00:38.96oai:locus.ufv.br:123456789/21607Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452018-09-05T02:00:38LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false
dc.title.en.fl_str_mv Intra-genotypic competition of Eucalyptus clones generated by environmental heterogeneity can optimize productivity in forest stands
title Intra-genotypic competition of Eucalyptus clones generated by environmental heterogeneity can optimize productivity in forest stands
spellingShingle Intra-genotypic competition of Eucalyptus clones generated by environmental heterogeneity can optimize productivity in forest stands
Resende, Rafael T.
Clonal competition
Mixed models
Forest breeding
Plant spacing
Stand productivity
title_short Intra-genotypic competition of Eucalyptus clones generated by environmental heterogeneity can optimize productivity in forest stands
title_full Intra-genotypic competition of Eucalyptus clones generated by environmental heterogeneity can optimize productivity in forest stands
title_fullStr Intra-genotypic competition of Eucalyptus clones generated by environmental heterogeneity can optimize productivity in forest stands
title_full_unstemmed Intra-genotypic competition of Eucalyptus clones generated by environmental heterogeneity can optimize productivity in forest stands
title_sort Intra-genotypic competition of Eucalyptus clones generated by environmental heterogeneity can optimize productivity in forest stands
author Resende, Rafael T.
author_facet Resende, Rafael T.
Marcatti, Gustavo E.
Pinto, Danielle S.
Takahashi, Elizabete K.
Cruz, Cosme Damião
Resende, Marcos Deon V.
author_role author
author2 Marcatti, Gustavo E.
Pinto, Danielle S.
Takahashi, Elizabete K.
Cruz, Cosme Damião
Resende, Marcos Deon V.
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Resende, Rafael T.
Marcatti, Gustavo E.
Pinto, Danielle S.
Takahashi, Elizabete K.
Cruz, Cosme Damião
Resende, Marcos Deon V.
dc.subject.pt-BR.fl_str_mv Clonal competition
Mixed models
Forest breeding
Plant spacing
Stand productivity
topic Clonal competition
Mixed models
Forest breeding
Plant spacing
Stand productivity
description The growth structure of Eucalyptus plantations is the result of site environment, genetic material, and different types of interaction between neighboring plants. It is well known that sites that are more homogeneous result in greater forest productivity. However, additional factors inherent in the micro- environment or the quality of cuttings can lead to heterogeneous clonal biomass at the end of the rotation cycle. This study of the growth patterns in commercial stands of Eucalyptus clones had two aims: (i) to determine whether environmental heterogeneity causes competition among genetically identical individuals and (ii) to validate the occurrence of intra-genotypic competition, revealing the potential relationship with forest productivity. The present study was developed based on two linear mixed models: a non-genetic model, which accounts for spatial autocorrelation and is used to estimate the effects of competition between neighboring trees into the single clone plots; and a genetic model to infer the nature of the clonal competition. Three hundred and six square plots containing one hundred plants from eight experiments using a randomized block design, with three replications, were evaluated. The experiments were positioned in different environmental conditions by combining two different plant spacings and two altitude elevations. Using the path analysis procedure, we verified that there were significant direct effects of competition according to the proximity of the trees in the plot. In addition, trees that were more distant caused indirect effects of competition through nearby trees. Stands with uniform growth conditions (measured by residual autocorrelation parameters) actually caused higher productivity. The results from the genetic correlations of intra-genotypic competition and productivity showed that the less competitive clones were always less productive, regardless of the experimental condition. The more competitively aggressive clones could optimize their productivity when planted in sites with high residual levels, reaching productivities similar to those of homogeneous stands. This suggests that the implementation of certain silviculture techniques, seeking to increase site uniformity, is less relevant to these clones. The selection and use of these clones might be useful for large companies, because they offer the opportunity to achieve high productivity, and for smaller producers who do not have access to the silvicultural quality used by large companies.
publishDate 2016
dc.date.issued.fl_str_mv 2016-11-15
dc.date.accessioned.fl_str_mv 2018-09-04T11:04:18Z
dc.date.available.fl_str_mv 2018-09-04T11:04:18Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://doi.org/10.1016/j.foreco.2016.08.041
http://www.locus.ufv.br/handle/123456789/21607
dc.identifier.issn.none.fl_str_mv 03781127
identifier_str_mv 03781127
url https://doi.org/10.1016/j.foreco.2016.08.041
http://www.locus.ufv.br/handle/123456789/21607
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartofseries.pt-BR.fl_str_mv v. 380, p. 50- 58, nov. 2016
dc.rights.driver.fl_str_mv Elsevier B.V.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Elsevier B.V.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Forest Ecology and Management
publisher.none.fl_str_mv Forest Ecology and Management
dc.source.none.fl_str_mv reponame:LOCUS Repositório Institucional da UFV
instname:Universidade Federal de Viçosa (UFV)
instacron:UFV
instname_str Universidade Federal de Viçosa (UFV)
instacron_str UFV
institution UFV
reponame_str LOCUS Repositório Institucional da UFV
collection LOCUS Repositório Institucional da UFV
bitstream.url.fl_str_mv https://locus.ufv.br//bitstream/123456789/21607/1/artigo.pdf
https://locus.ufv.br//bitstream/123456789/21607/2/license.txt
https://locus.ufv.br//bitstream/123456789/21607/3/artigo.pdf.jpg
bitstream.checksum.fl_str_mv 52d5c9fe3031274652dd9dcf16f2a9a4
8a4605be74aa9ea9d79846c1fba20a33
423065a633a3e2fb5769ea7a1f103361
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)
repository.mail.fl_str_mv fabiojreis@ufv.br
_version_ 1801212844820135936