Uma abordagem para a classificação monotônica de dados correlacionados

Detalhes bibliográficos
Autor(a) principal: Ribeiro, Marcelo Carlos
Data de Publicação: 2019
Tipo de documento: Tese
Idioma: por
Título da fonte: LOCUS Repositório Institucional da UFV
Texto Completo: https://locus.ufv.br//handle/123456789/28619
Resumo: A classificação ordenada está cada vez mais atraindo o interesse de áreas como es- tatística, ciências da computação e pesquisa operacional. A restrição de monotonici- dade indica uma relação entre o rótulo da classe com uma ou mais variáveis (atribu- tos). Nesta tese, apresentam-se duas contribuições resultantes de um trabalho de in- vestigação sobre a classificação monotônica de dados correlacionados. Uma consiste em propor uma metodologia que se baseia no método CPP-tri proposto por Sant’Anna, Costa e Pereira (2015), que considere a correlação entre os atributos no cálculo da probabilidade do indivíduo pertencer a classe. A outra, consiste em fornecer um pa- cote R para o método proposto, denominado como CPP-cor Ribeiro et al. (2020). Os algoritmos desenvolvidos basearam-se no código em R disponível em Silva (2016). A metodologia proposta não só agrega a informação relacionada à correlação das va- riáveis ao método, como apresenta resultados significativamente superiores quando comparados aos resultados obtidos pela metodologia tradicional, o método CPP-tri. Palavras-chave: Classificação monotônica. Múltiplas variáveis correlacionadas.
id UFV_bf64d99c02e268a19c8b1e7875a5b35f
oai_identifier_str oai:locus.ufv.br:123456789/28619
network_acronym_str UFV
network_name_str LOCUS Repositório Institucional da UFV
repository_id_str 2145
spelling Pereira, Tiago MartinsRibeiro, Marcelo Carloshttp://lattes.cnpq.br/7535255933317217Oliveira, Fernando Luiz Pereira de2022-02-04T11:16:29Z2022-02-04T11:16:29Z2019-12-18RIBEIRO, Marcelo Carlos. Uma abordagem para a classificação monotônica de dados correlacionados. 2019. 72 f. Tese (Doutorado em Estatística Aplicada e Biometria) - Universidade Federal de Viçosa, Viçosa. 2019.https://locus.ufv.br//handle/123456789/28619A classificação ordenada está cada vez mais atraindo o interesse de áreas como es- tatística, ciências da computação e pesquisa operacional. A restrição de monotonici- dade indica uma relação entre o rótulo da classe com uma ou mais variáveis (atribu- tos). Nesta tese, apresentam-se duas contribuições resultantes de um trabalho de in- vestigação sobre a classificação monotônica de dados correlacionados. Uma consiste em propor uma metodologia que se baseia no método CPP-tri proposto por Sant’Anna, Costa e Pereira (2015), que considere a correlação entre os atributos no cálculo da probabilidade do indivíduo pertencer a classe. A outra, consiste em fornecer um pa- cote R para o método proposto, denominado como CPP-cor Ribeiro et al. (2020). Os algoritmos desenvolvidos basearam-se no código em R disponível em Silva (2016). A metodologia proposta não só agrega a informação relacionada à correlação das va- riáveis ao método, como apresenta resultados significativamente superiores quando comparados aos resultados obtidos pela metodologia tradicional, o método CPP-tri. Palavras-chave: Classificação monotônica. Múltiplas variáveis correlacionadas.The classification ordered is increasingly attracting interest from areas such as statis- tics, computer science and operational research. The monotonicity constraint indicates a relationship between the class label with one or more variables (attributes). In this thesis, two contributions resulting from research work on the monotonic classification of correlated data are presented. One is to propose a methodology based on the CPP-tri method proposed by Sant’Anna, Costa e Pereira (2015), which considers the corre- lation between attributes when calculating the probability of the individual belonging to the class. The other is to provide an R package for the proposed method, called CPP-cor Ribeiro et al. (2020). The developed algorithms were based on the R code available at Silva (2016). The proposed methodology not only aggregates information related to the correlation of variables to the method, but also presents significantly su- perior results when compared to the results obtained by the traditional methodology, the CPP-tri method. Keywords: Monotonic classification. Multiple correlated variables.porUniversidade Federal de ViçosaClassificação e seleção (Estatística)Variáveis (Matemática)Correlação (Estatística)EstatísticaUma abordagem para a classificação monotônica de dados correlacionadosAn approach to the monotonic classification of correlated datainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisUniversidade Federal de ViçosaDepartamento de EstatísticaDoutor em Estatística Aplicada e BiometriaViçosa - MG2019-12-18Doutoradoinfo:eu-repo/semantics/openAccessreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALtexto completo.pdftexto completo.pdftexto completoapplication/pdf1327188https://locus.ufv.br//bitstream/123456789/28619/1/texto%20completo.pdf6e4bdcbf550d6d128792d08cae41b40dMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://locus.ufv.br//bitstream/123456789/28619/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52123456789/286192022-02-04 08:17:43.516oai:locus.ufv.br:123456789/28619Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452022-02-04T11:17:43LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false
dc.title.pt-BR.fl_str_mv Uma abordagem para a classificação monotônica de dados correlacionados
dc.title.en.fl_str_mv An approach to the monotonic classification of correlated data
title Uma abordagem para a classificação monotônica de dados correlacionados
spellingShingle Uma abordagem para a classificação monotônica de dados correlacionados
Ribeiro, Marcelo Carlos
Classificação e seleção (Estatística)
Variáveis (Matemática)
Correlação (Estatística)
Estatística
title_short Uma abordagem para a classificação monotônica de dados correlacionados
title_full Uma abordagem para a classificação monotônica de dados correlacionados
title_fullStr Uma abordagem para a classificação monotônica de dados correlacionados
title_full_unstemmed Uma abordagem para a classificação monotônica de dados correlacionados
title_sort Uma abordagem para a classificação monotônica de dados correlacionados
author Ribeiro, Marcelo Carlos
author_facet Ribeiro, Marcelo Carlos
author_role author
dc.contributor.authorLattes.pt-BR.fl_str_mv http://lattes.cnpq.br/7535255933317217
dc.contributor.none.fl_str_mv Pereira, Tiago Martins
dc.contributor.author.fl_str_mv Ribeiro, Marcelo Carlos
dc.contributor.advisor1.fl_str_mv Oliveira, Fernando Luiz Pereira de
contributor_str_mv Oliveira, Fernando Luiz Pereira de
dc.subject.pt-BR.fl_str_mv Classificação e seleção (Estatística)
Variáveis (Matemática)
Correlação (Estatística)
topic Classificação e seleção (Estatística)
Variáveis (Matemática)
Correlação (Estatística)
Estatística
dc.subject.cnpq.fl_str_mv Estatística
description A classificação ordenada está cada vez mais atraindo o interesse de áreas como es- tatística, ciências da computação e pesquisa operacional. A restrição de monotonici- dade indica uma relação entre o rótulo da classe com uma ou mais variáveis (atribu- tos). Nesta tese, apresentam-se duas contribuições resultantes de um trabalho de in- vestigação sobre a classificação monotônica de dados correlacionados. Uma consiste em propor uma metodologia que se baseia no método CPP-tri proposto por Sant’Anna, Costa e Pereira (2015), que considere a correlação entre os atributos no cálculo da probabilidade do indivíduo pertencer a classe. A outra, consiste em fornecer um pa- cote R para o método proposto, denominado como CPP-cor Ribeiro et al. (2020). Os algoritmos desenvolvidos basearam-se no código em R disponível em Silva (2016). A metodologia proposta não só agrega a informação relacionada à correlação das va- riáveis ao método, como apresenta resultados significativamente superiores quando comparados aos resultados obtidos pela metodologia tradicional, o método CPP-tri. Palavras-chave: Classificação monotônica. Múltiplas variáveis correlacionadas.
publishDate 2019
dc.date.issued.fl_str_mv 2019-12-18
dc.date.accessioned.fl_str_mv 2022-02-04T11:16:29Z
dc.date.available.fl_str_mv 2022-02-04T11:16:29Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv RIBEIRO, Marcelo Carlos. Uma abordagem para a classificação monotônica de dados correlacionados. 2019. 72 f. Tese (Doutorado em Estatística Aplicada e Biometria) - Universidade Federal de Viçosa, Viçosa. 2019.
dc.identifier.uri.fl_str_mv https://locus.ufv.br//handle/123456789/28619
identifier_str_mv RIBEIRO, Marcelo Carlos. Uma abordagem para a classificação monotônica de dados correlacionados. 2019. 72 f. Tese (Doutorado em Estatística Aplicada e Biometria) - Universidade Federal de Viçosa, Viçosa. 2019.
url https://locus.ufv.br//handle/123456789/28619
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Viçosa
publisher.none.fl_str_mv Universidade Federal de Viçosa
dc.source.none.fl_str_mv reponame:LOCUS Repositório Institucional da UFV
instname:Universidade Federal de Viçosa (UFV)
instacron:UFV
instname_str Universidade Federal de Viçosa (UFV)
instacron_str UFV
institution UFV
reponame_str LOCUS Repositório Institucional da UFV
collection LOCUS Repositório Institucional da UFV
bitstream.url.fl_str_mv https://locus.ufv.br//bitstream/123456789/28619/1/texto%20completo.pdf
https://locus.ufv.br//bitstream/123456789/28619/2/license.txt
bitstream.checksum.fl_str_mv 6e4bdcbf550d6d128792d08cae41b40d
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)
repository.mail.fl_str_mv fabiojreis@ufv.br
_version_ 1801212903480623104