Atributos topográficos e dados do Landsat7 no mapeamento digital de solos com uso de redes neurais

Detalhes bibliográficos
Autor(a) principal: Fernandes Filho, Elpídio Inácio
Data de Publicação: 2010
Outros Autores: Chagas, César da Silva, Vieira, Carlos Antônio Oliveira, Schaefer, Carlos Ernesto Gonçalves Reynaud, Carvalho Júnior, Waldir de
Tipo de documento: Artigo
Idioma: por
Título da fonte: LOCUS Repositório Institucional da UFV
Texto Completo: http://dx.doi.org/10.1590/S0100-204X2010000500009
https://locus.ufv.br//handle/123456789/26545
Resumo: O objetivo deste trabalho foi avaliar variáveis discriminantes no mapeamento digital de solos com uso de redes neurais artificiais. Os atributos topográficos elevação, declividade, aspecto, plano de curvatura e índice topográfico, derivados de um modelo digital de elevação, e os índices de minerais de argila, óxido de ferro e vegetação por diferença normalizada, derivados de uma imagem do Landsat7, foram combinados e avaliados quanto à capacidade de discriminação dos solos de uma área no noroeste do Estado do Rio de Janeiro. Foram utilizados o simulador de redes neurais Java e o algoritmo de aprendizado "backpropagation". Os mapas gerados por cada um dos seis conjuntos de variáveis testados foram comparados com pontos de referência, para a determinação da exatidão das classificações. Esta comparação mostrou que o mapa produzido com a utilização de todas as variáveis obteve um desempenho superior (73,81% de concordância) ao de mapas produzidos pelos demais conjuntos de variáveis. Possíveis fontes de erro na utilização dessa abordagem estão relacionadas, principalmente, à grande heterogeneidade litológica da área, que dificultou o estabelecimento de um modelo de correlação ambiental mais realista. A abordagem utilizada pode contribuir para tornar o levantamento de solos no Brasil mais rápido e menos subjetivo.
id UFV_c3b7994855c6a375b765a5c9f7baf74e
oai_identifier_str oai:locus.ufv.br:123456789/26545
network_acronym_str UFV
network_name_str LOCUS Repositório Institucional da UFV
repository_id_str 2145
spelling Fernandes Filho, Elpídio InácioChagas, César da SilvaVieira, Carlos Antônio OliveiraSchaefer, Carlos Ernesto Gonçalves ReynaudCarvalho Júnior, Waldir de2019-08-09T13:52:59Z2019-08-09T13:52:59Z2010-051678-3921http://dx.doi.org/10.1590/S0100-204X2010000500009https://locus.ufv.br//handle/123456789/26545O objetivo deste trabalho foi avaliar variáveis discriminantes no mapeamento digital de solos com uso de redes neurais artificiais. Os atributos topográficos elevação, declividade, aspecto, plano de curvatura e índice topográfico, derivados de um modelo digital de elevação, e os índices de minerais de argila, óxido de ferro e vegetação por diferença normalizada, derivados de uma imagem do Landsat7, foram combinados e avaliados quanto à capacidade de discriminação dos solos de uma área no noroeste do Estado do Rio de Janeiro. Foram utilizados o simulador de redes neurais Java e o algoritmo de aprendizado "backpropagation". Os mapas gerados por cada um dos seis conjuntos de variáveis testados foram comparados com pontos de referência, para a determinação da exatidão das classificações. Esta comparação mostrou que o mapa produzido com a utilização de todas as variáveis obteve um desempenho superior (73,81% de concordância) ao de mapas produzidos pelos demais conjuntos de variáveis. Possíveis fontes de erro na utilização dessa abordagem estão relacionadas, principalmente, à grande heterogeneidade litológica da área, que dificultou o estabelecimento de um modelo de correlação ambiental mais realista. A abordagem utilizada pode contribuir para tornar o levantamento de solos no Brasil mais rápido e menos subjetivo.The objective of this study was to evaluate discriminant variables in digital soil mapping using artificial neural networks. The topographic attributes elevation, slope, aspect, plan curvature and topographic index, derived from a digital elevation model, and the indexes of clay minerals, iron oxide and normalized difference vegetation, derived from a Landsat7 image, were combined and evaluated for their ability to discriminate soils of an area at the northwest of Rio de Janeiro State. The Java neural simulator and the backpropagation learning algorithm were used. The maps generated by each of the six tested sets of variables were compared with reference points for determining the rating accuracy. This comparison showed that the map produced with the use of all the variables reached a performance (73.81% of agreement) superior to maps produced by other sets of variables. Possible sources of error in the use of this approach are mainly related to the great lithological heterogeneity of the area, which hindered the establishment of a more realistic model of environmental correlation. The approach can help make the soil survey in Brazil faster and less subjective.porPesquisa Agropecuária Brasileirav. 45, n. 05, p. 497- 507, mai. 2010Atributos do terrenoClassificação de solosModelo digital de elevaçãoRedes neurais artificiaisTerrain attributesClassification of soilsDigital elevation modelArtificial neural networksAtributos topográficos e dados do Landsat7 no mapeamento digital de solos com uso de redes neuraisinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfinfo:eu-repo/semantics/openAccessreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALartigo.pdfartigo.pdftexto completoapplication/pdf2486235https://locus.ufv.br//bitstream/123456789/26545/1/artigo.pdf50433d59c2b1189631ecba7d677b1d8bMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://locus.ufv.br//bitstream/123456789/26545/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52123456789/265452019-08-09 11:39:54.123oai:locus.ufv.br:123456789/26545Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452019-08-09T14:39:54LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false
dc.title.pt-BR.fl_str_mv Atributos topográficos e dados do Landsat7 no mapeamento digital de solos com uso de redes neurais
title Atributos topográficos e dados do Landsat7 no mapeamento digital de solos com uso de redes neurais
spellingShingle Atributos topográficos e dados do Landsat7 no mapeamento digital de solos com uso de redes neurais
Fernandes Filho, Elpídio Inácio
Atributos do terreno
Classificação de solos
Modelo digital de elevação
Redes neurais artificiais
Terrain attributes
Classification of soils
Digital elevation model
Artificial neural networks
title_short Atributos topográficos e dados do Landsat7 no mapeamento digital de solos com uso de redes neurais
title_full Atributos topográficos e dados do Landsat7 no mapeamento digital de solos com uso de redes neurais
title_fullStr Atributos topográficos e dados do Landsat7 no mapeamento digital de solos com uso de redes neurais
title_full_unstemmed Atributos topográficos e dados do Landsat7 no mapeamento digital de solos com uso de redes neurais
title_sort Atributos topográficos e dados do Landsat7 no mapeamento digital de solos com uso de redes neurais
author Fernandes Filho, Elpídio Inácio
author_facet Fernandes Filho, Elpídio Inácio
Chagas, César da Silva
Vieira, Carlos Antônio Oliveira
Schaefer, Carlos Ernesto Gonçalves Reynaud
Carvalho Júnior, Waldir de
author_role author
author2 Chagas, César da Silva
Vieira, Carlos Antônio Oliveira
Schaefer, Carlos Ernesto Gonçalves Reynaud
Carvalho Júnior, Waldir de
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Fernandes Filho, Elpídio Inácio
Chagas, César da Silva
Vieira, Carlos Antônio Oliveira
Schaefer, Carlos Ernesto Gonçalves Reynaud
Carvalho Júnior, Waldir de
dc.subject.pt-BR.fl_str_mv Atributos do terreno
Classificação de solos
Modelo digital de elevação
Redes neurais artificiais
Terrain attributes
Classification of soils
Digital elevation model
Artificial neural networks
topic Atributos do terreno
Classificação de solos
Modelo digital de elevação
Redes neurais artificiais
Terrain attributes
Classification of soils
Digital elevation model
Artificial neural networks
description O objetivo deste trabalho foi avaliar variáveis discriminantes no mapeamento digital de solos com uso de redes neurais artificiais. Os atributos topográficos elevação, declividade, aspecto, plano de curvatura e índice topográfico, derivados de um modelo digital de elevação, e os índices de minerais de argila, óxido de ferro e vegetação por diferença normalizada, derivados de uma imagem do Landsat7, foram combinados e avaliados quanto à capacidade de discriminação dos solos de uma área no noroeste do Estado do Rio de Janeiro. Foram utilizados o simulador de redes neurais Java e o algoritmo de aprendizado "backpropagation". Os mapas gerados por cada um dos seis conjuntos de variáveis testados foram comparados com pontos de referência, para a determinação da exatidão das classificações. Esta comparação mostrou que o mapa produzido com a utilização de todas as variáveis obteve um desempenho superior (73,81% de concordância) ao de mapas produzidos pelos demais conjuntos de variáveis. Possíveis fontes de erro na utilização dessa abordagem estão relacionadas, principalmente, à grande heterogeneidade litológica da área, que dificultou o estabelecimento de um modelo de correlação ambiental mais realista. A abordagem utilizada pode contribuir para tornar o levantamento de solos no Brasil mais rápido e menos subjetivo.
publishDate 2010
dc.date.issued.fl_str_mv 2010-05
dc.date.accessioned.fl_str_mv 2019-08-09T13:52:59Z
dc.date.available.fl_str_mv 2019-08-09T13:52:59Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1590/S0100-204X2010000500009
https://locus.ufv.br//handle/123456789/26545
dc.identifier.issn.none.fl_str_mv 1678-3921
identifier_str_mv 1678-3921
url http://dx.doi.org/10.1590/S0100-204X2010000500009
https://locus.ufv.br//handle/123456789/26545
dc.language.iso.fl_str_mv por
language por
dc.relation.ispartofseries.pt-BR.fl_str_mv v. 45, n. 05, p. 497- 507, mai. 2010
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Pesquisa Agropecuária Brasileira
publisher.none.fl_str_mv Pesquisa Agropecuária Brasileira
dc.source.none.fl_str_mv reponame:LOCUS Repositório Institucional da UFV
instname:Universidade Federal de Viçosa (UFV)
instacron:UFV
instname_str Universidade Federal de Viçosa (UFV)
instacron_str UFV
institution UFV
reponame_str LOCUS Repositório Institucional da UFV
collection LOCUS Repositório Institucional da UFV
bitstream.url.fl_str_mv https://locus.ufv.br//bitstream/123456789/26545/1/artigo.pdf
https://locus.ufv.br//bitstream/123456789/26545/2/license.txt
bitstream.checksum.fl_str_mv 50433d59c2b1189631ecba7d677b1d8b
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)
repository.mail.fl_str_mv fabiojreis@ufv.br
_version_ 1801212985730924544