Oxalic acid-mediated biochemical and physiological changes in the common bean-Sclerotinia sclerotiorum interaction

Detalhes bibliográficos
Autor(a) principal: Fagundes-Nacarath, I. R. F.
Data de Publicação: 2018
Outros Autores: Debona, D., Rodrigues, F. A.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: LOCUS Repositório Institucional da UFV
Texto Completo: https://doi.org/10.1016/j.plaphy.2018.05.028
http://www.locus.ufv.br/handle/123456789/22492
Resumo: The success of Sclerotinia sclerotiorum infection relies mainly on the production of the non-host selective toxin named oxalic acid (OA). This toxin is known to play multiple roles in a host infected by the fungus, but its effect on photosynthesis and the antioxidant system of common bean plants remain elusive. Therefore, we performed detailed analysis of leaf gas exchange, chlorophyll a fluorescence, activities of antioxidant enzymes, concentrations of reactive oxygen species and photosynthetic pigments to investigate the OA's role during the S. sclerotiorum pathogenesis. To achieve this goal, common bean plants were sprayed with water or with oxalic acid (referred to as –OA and +OA plants, respectively) and either non-challenged or challenged with a wild-type (WT) or an OA-defective mutant (A4) of S. sclerotiorum. Irrespective of OA spray, the WT isolate was more aggressive than the A4 isolate and spraying OA increased OA concentration in the leaflets as well as the aggressiveness of both isolates. Biochemical limitations were behind S. sclerotiorum-induced photosynthetic impairments notably for the +OA plants inoculated with the WT isolate. Inoculated plants were not able to fully capture and exploit the collected energy due to the degradation of photosynthetic pigments. Photoinhibition of photosynthesis and photochemical dysfunctions were potentiated by OA. Higher activities of superoxide dismutase, peroxidase and ascorbate peroxidase besides reductions on catalase activity were noticed for plants inoculated with the WT isolate. OA was able to counteract most of the increases in the activities of antioxidant enzymes thereby increasing the generation of superoxide and hydrogen peroxide and the concurrent damage to the membranes of host cells as evidenced by the high malondialdehyde concentration. In conclusion, OA was found to enhance biochemical limitations to photosynthesis, photochemical dysfunctions and oxidative stress in the leaflets of common bean plants infected by S. sclerotiorum.
id UFV_c5dcd45d8175894bde0c85ba79e583bd
oai_identifier_str oai:locus.ufv.br:123456789/22492
network_acronym_str UFV
network_name_str LOCUS Repositório Institucional da UFV
repository_id_str 2145
spelling Fagundes-Nacarath, I. R. F.Debona, D.Rodrigues, F. A.2018-11-07T16:54:30Z2018-11-07T16:54:30Z2018-0809819428https://doi.org/10.1016/j.plaphy.2018.05.028http://www.locus.ufv.br/handle/123456789/22492The success of Sclerotinia sclerotiorum infection relies mainly on the production of the non-host selective toxin named oxalic acid (OA). This toxin is known to play multiple roles in a host infected by the fungus, but its effect on photosynthesis and the antioxidant system of common bean plants remain elusive. Therefore, we performed detailed analysis of leaf gas exchange, chlorophyll a fluorescence, activities of antioxidant enzymes, concentrations of reactive oxygen species and photosynthetic pigments to investigate the OA's role during the S. sclerotiorum pathogenesis. To achieve this goal, common bean plants were sprayed with water or with oxalic acid (referred to as –OA and +OA plants, respectively) and either non-challenged or challenged with a wild-type (WT) or an OA-defective mutant (A4) of S. sclerotiorum. Irrespective of OA spray, the WT isolate was more aggressive than the A4 isolate and spraying OA increased OA concentration in the leaflets as well as the aggressiveness of both isolates. Biochemical limitations were behind S. sclerotiorum-induced photosynthetic impairments notably for the +OA plants inoculated with the WT isolate. Inoculated plants were not able to fully capture and exploit the collected energy due to the degradation of photosynthetic pigments. Photoinhibition of photosynthesis and photochemical dysfunctions were potentiated by OA. Higher activities of superoxide dismutase, peroxidase and ascorbate peroxidase besides reductions on catalase activity were noticed for plants inoculated with the WT isolate. OA was able to counteract most of the increases in the activities of antioxidant enzymes thereby increasing the generation of superoxide and hydrogen peroxide and the concurrent damage to the membranes of host cells as evidenced by the high malondialdehyde concentration. In conclusion, OA was found to enhance biochemical limitations to photosynthesis, photochemical dysfunctions and oxidative stress in the leaflets of common bean plants infected by S. sclerotiorum.engPlant Physiology and BiochemistryVolume 129, Pages 109- 121, August 20182018 Elsevier Masson SAS. All rights reserved.info:eu-repo/semantics/openAccessPhaseolus vulgarisAntioxidant systemChlorophyll a fluorescenceLeaf gas exchangePhotosynthesisWhite moldOxalic acid-mediated biochemical and physiological changes in the common bean-Sclerotinia sclerotiorum interactioninfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALartigo.pdfartigo.pdftexto completoapplication/pdf1905860https://locus.ufv.br//bitstream/123456789/22492/1/artigo.pdf1d9673e2daf6c0411493f27da5389003MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://locus.ufv.br//bitstream/123456789/22492/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52123456789/224922018-11-07 14:22:12.27oai:locus.ufv.br:123456789/22492Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452018-11-07T17:22:12LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false
dc.title.en.fl_str_mv Oxalic acid-mediated biochemical and physiological changes in the common bean-Sclerotinia sclerotiorum interaction
title Oxalic acid-mediated biochemical and physiological changes in the common bean-Sclerotinia sclerotiorum interaction
spellingShingle Oxalic acid-mediated biochemical and physiological changes in the common bean-Sclerotinia sclerotiorum interaction
Fagundes-Nacarath, I. R. F.
Phaseolus vulgaris
Antioxidant system
Chlorophyll a fluorescence
Leaf gas exchange
Photosynthesis
White mold
title_short Oxalic acid-mediated biochemical and physiological changes in the common bean-Sclerotinia sclerotiorum interaction
title_full Oxalic acid-mediated biochemical and physiological changes in the common bean-Sclerotinia sclerotiorum interaction
title_fullStr Oxalic acid-mediated biochemical and physiological changes in the common bean-Sclerotinia sclerotiorum interaction
title_full_unstemmed Oxalic acid-mediated biochemical and physiological changes in the common bean-Sclerotinia sclerotiorum interaction
title_sort Oxalic acid-mediated biochemical and physiological changes in the common bean-Sclerotinia sclerotiorum interaction
author Fagundes-Nacarath, I. R. F.
author_facet Fagundes-Nacarath, I. R. F.
Debona, D.
Rodrigues, F. A.
author_role author
author2 Debona, D.
Rodrigues, F. A.
author2_role author
author
dc.contributor.author.fl_str_mv Fagundes-Nacarath, I. R. F.
Debona, D.
Rodrigues, F. A.
dc.subject.pt-BR.fl_str_mv Phaseolus vulgaris
Antioxidant system
Chlorophyll a fluorescence
Leaf gas exchange
Photosynthesis
White mold
topic Phaseolus vulgaris
Antioxidant system
Chlorophyll a fluorescence
Leaf gas exchange
Photosynthesis
White mold
description The success of Sclerotinia sclerotiorum infection relies mainly on the production of the non-host selective toxin named oxalic acid (OA). This toxin is known to play multiple roles in a host infected by the fungus, but its effect on photosynthesis and the antioxidant system of common bean plants remain elusive. Therefore, we performed detailed analysis of leaf gas exchange, chlorophyll a fluorescence, activities of antioxidant enzymes, concentrations of reactive oxygen species and photosynthetic pigments to investigate the OA's role during the S. sclerotiorum pathogenesis. To achieve this goal, common bean plants were sprayed with water or with oxalic acid (referred to as –OA and +OA plants, respectively) and either non-challenged or challenged with a wild-type (WT) or an OA-defective mutant (A4) of S. sclerotiorum. Irrespective of OA spray, the WT isolate was more aggressive than the A4 isolate and spraying OA increased OA concentration in the leaflets as well as the aggressiveness of both isolates. Biochemical limitations were behind S. sclerotiorum-induced photosynthetic impairments notably for the +OA plants inoculated with the WT isolate. Inoculated plants were not able to fully capture and exploit the collected energy due to the degradation of photosynthetic pigments. Photoinhibition of photosynthesis and photochemical dysfunctions were potentiated by OA. Higher activities of superoxide dismutase, peroxidase and ascorbate peroxidase besides reductions on catalase activity were noticed for plants inoculated with the WT isolate. OA was able to counteract most of the increases in the activities of antioxidant enzymes thereby increasing the generation of superoxide and hydrogen peroxide and the concurrent damage to the membranes of host cells as evidenced by the high malondialdehyde concentration. In conclusion, OA was found to enhance biochemical limitations to photosynthesis, photochemical dysfunctions and oxidative stress in the leaflets of common bean plants infected by S. sclerotiorum.
publishDate 2018
dc.date.accessioned.fl_str_mv 2018-11-07T16:54:30Z
dc.date.available.fl_str_mv 2018-11-07T16:54:30Z
dc.date.issued.fl_str_mv 2018-08
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://doi.org/10.1016/j.plaphy.2018.05.028
http://www.locus.ufv.br/handle/123456789/22492
dc.identifier.issn.none.fl_str_mv 09819428
identifier_str_mv 09819428
url https://doi.org/10.1016/j.plaphy.2018.05.028
http://www.locus.ufv.br/handle/123456789/22492
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartofseries.pt-BR.fl_str_mv Volume 129, Pages 109- 121, August 2018
dc.rights.driver.fl_str_mv 2018 Elsevier Masson SAS. All rights reserved.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv 2018 Elsevier Masson SAS. All rights reserved.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Plant Physiology and Biochemistry
publisher.none.fl_str_mv Plant Physiology and Biochemistry
dc.source.none.fl_str_mv reponame:LOCUS Repositório Institucional da UFV
instname:Universidade Federal de Viçosa (UFV)
instacron:UFV
instname_str Universidade Federal de Viçosa (UFV)
instacron_str UFV
institution UFV
reponame_str LOCUS Repositório Institucional da UFV
collection LOCUS Repositório Institucional da UFV
bitstream.url.fl_str_mv https://locus.ufv.br//bitstream/123456789/22492/1/artigo.pdf
https://locus.ufv.br//bitstream/123456789/22492/2/license.txt
bitstream.checksum.fl_str_mv 1d9673e2daf6c0411493f27da5389003
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)
repository.mail.fl_str_mv fabiojreis@ufv.br
_version_ 1801212897566654464