A new set of differentially expressed signaling genes is early expressed in coffee leaf rust race II incompatible interaction
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | LOCUS Repositório Institucional da UFV |
Texto Completo: | https://doi.org/10.1007/s10142-013-0330-7 http://www.locus.ufv.br/handle/123456789/18533 |
Resumo: | New races of coffee rust are overcoming resistance genes available in germplasm and cultivated cultivars and bringing recently some coffee-producing countries in severe economic challenge. The objective of this study was to identify the genes that are linked to host resistance to the major coffee rust race II. In our study, we have identified and studied a segregating population that has a single monogenic resistant gene to coffee rust. Coffee leaves of parents, resistant, and susceptible genotypes of the F2 generation plants were inoculated with pathogen spores. A differential analysis was performed by combined cDNA-AFLP and bulk segregant analysis (BSA) in pooled samples collected 48 and 72 h postinoculation, increasing the selectiveness for differential gene expression. Of 108 differential expressed genes, between 33,000 gene fragments analyzed, 108 differential expressed genes were identified in resistant plants. About 20 and 22 % of these resistant-correlated genes are related to signaling and defense genes, respectively. Between signaling genes, the major subclass corresponds to receptor and resistant homolog genes, like nucleotide-binding site leucine-rich repeat (NBS-LRR), Pto-like, RLKs, Bger, and RGH1A, all not previously described in coffee rust responses. The second major subclass included kinases, where two mitogen-activated kinases (MAPK) are identified. Further gene expression analysis was performed for 21 selected genes by real-time PCR gene expression analysis at 0, 12, 24, 48, and 72 h postinoculation. The expression of genes involved in signaling and defense was higher at 24 and 72 h after inoculation, respectively. The NBS-LRR was the more differentially expressed gene between the signaling genes (four times more expressed in the resistant genotype), and thraumatin (PR5) was the more expressed between all genes (six times more expressed). Multivariate analysis reinforces the significance of the temporal separation of identified signaling and defense genes: early expression of signaling genes support the hypothesis that higher expression of the signaling components up regulates the defense genes identified. Additionally the increased gene expression of these two gene sets is associated with a single monogenic resistance trait to to leaf coffee rust in the interaction characterized here. |
id |
UFV_c6404f57e98037de61215003023ca55f |
---|---|
oai_identifier_str |
oai:locus.ufv.br:123456789/18533 |
network_acronym_str |
UFV |
network_name_str |
LOCUS Repositório Institucional da UFV |
repository_id_str |
2145 |
spelling |
Diola, ValdirBrito, Giovani G.Caixeta, Eveline T.Pereira, Luiz F. P.Loureiro, Marcelo E.2018-03-27T16:45:08Z2018-03-27T16:45:08Z2013-07-0914387948https://doi.org/10.1007/s10142-013-0330-7http://www.locus.ufv.br/handle/123456789/18533New races of coffee rust are overcoming resistance genes available in germplasm and cultivated cultivars and bringing recently some coffee-producing countries in severe economic challenge. The objective of this study was to identify the genes that are linked to host resistance to the major coffee rust race II. In our study, we have identified and studied a segregating population that has a single monogenic resistant gene to coffee rust. Coffee leaves of parents, resistant, and susceptible genotypes of the F2 generation plants were inoculated with pathogen spores. A differential analysis was performed by combined cDNA-AFLP and bulk segregant analysis (BSA) in pooled samples collected 48 and 72 h postinoculation, increasing the selectiveness for differential gene expression. Of 108 differential expressed genes, between 33,000 gene fragments analyzed, 108 differential expressed genes were identified in resistant plants. About 20 and 22 % of these resistant-correlated genes are related to signaling and defense genes, respectively. Between signaling genes, the major subclass corresponds to receptor and resistant homolog genes, like nucleotide-binding site leucine-rich repeat (NBS-LRR), Pto-like, RLKs, Bger, and RGH1A, all not previously described in coffee rust responses. The second major subclass included kinases, where two mitogen-activated kinases (MAPK) are identified. Further gene expression analysis was performed for 21 selected genes by real-time PCR gene expression analysis at 0, 12, 24, 48, and 72 h postinoculation. The expression of genes involved in signaling and defense was higher at 24 and 72 h after inoculation, respectively. The NBS-LRR was the more differentially expressed gene between the signaling genes (four times more expressed in the resistant genotype), and thraumatin (PR5) was the more expressed between all genes (six times more expressed). Multivariate analysis reinforces the significance of the temporal separation of identified signaling and defense genes: early expression of signaling genes support the hypothesis that higher expression of the signaling components up regulates the defense genes identified. Additionally the increased gene expression of these two gene sets is associated with a single monogenic resistance trait to to leaf coffee rust in the interaction characterized here.engFunctional & Integrative Genomicsv. 13, Issue 3, p. 379–389, August 2013Springer-Verlag Berlin Heidelberginfo:eu-repo/semantics/openAccessHemileia vastatrixHost-specific resistanceR-genesTranscript-derived fragmentsDefense responseSignaling in response to pathogensA new set of differentially expressed signaling genes is early expressed in coffee leaf rust race II incompatible interactioninfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALartigo.pdfartigo.pdfTexto completoapplication/pdf410188https://locus.ufv.br//bitstream/123456789/18533/1/artigo.pdfcd97392f981eb92ca5a72c7a2b4a44aeMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://locus.ufv.br//bitstream/123456789/18533/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILartigo.pdf.jpgartigo.pdf.jpgIM Thumbnailimage/jpeg5091https://locus.ufv.br//bitstream/123456789/18533/3/artigo.pdf.jpg64d2fc33f4416498eb3c98aa2fc3cfe5MD53123456789/185332018-03-27 23:00:50.975oai:locus.ufv.br:123456789/18533Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452018-03-28T02:00:50LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false |
dc.title.en.fl_str_mv |
A new set of differentially expressed signaling genes is early expressed in coffee leaf rust race II incompatible interaction |
title |
A new set of differentially expressed signaling genes is early expressed in coffee leaf rust race II incompatible interaction |
spellingShingle |
A new set of differentially expressed signaling genes is early expressed in coffee leaf rust race II incompatible interaction Diola, Valdir Hemileia vastatrix Host-specific resistance R-genes Transcript-derived fragments Defense response Signaling in response to pathogens |
title_short |
A new set of differentially expressed signaling genes is early expressed in coffee leaf rust race II incompatible interaction |
title_full |
A new set of differentially expressed signaling genes is early expressed in coffee leaf rust race II incompatible interaction |
title_fullStr |
A new set of differentially expressed signaling genes is early expressed in coffee leaf rust race II incompatible interaction |
title_full_unstemmed |
A new set of differentially expressed signaling genes is early expressed in coffee leaf rust race II incompatible interaction |
title_sort |
A new set of differentially expressed signaling genes is early expressed in coffee leaf rust race II incompatible interaction |
author |
Diola, Valdir |
author_facet |
Diola, Valdir Brito, Giovani G. Caixeta, Eveline T. Pereira, Luiz F. P. Loureiro, Marcelo E. |
author_role |
author |
author2 |
Brito, Giovani G. Caixeta, Eveline T. Pereira, Luiz F. P. Loureiro, Marcelo E. |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Diola, Valdir Brito, Giovani G. Caixeta, Eveline T. Pereira, Luiz F. P. Loureiro, Marcelo E. |
dc.subject.pt-BR.fl_str_mv |
Hemileia vastatrix Host-specific resistance R-genes Transcript-derived fragments Defense response Signaling in response to pathogens |
topic |
Hemileia vastatrix Host-specific resistance R-genes Transcript-derived fragments Defense response Signaling in response to pathogens |
description |
New races of coffee rust are overcoming resistance genes available in germplasm and cultivated cultivars and bringing recently some coffee-producing countries in severe economic challenge. The objective of this study was to identify the genes that are linked to host resistance to the major coffee rust race II. In our study, we have identified and studied a segregating population that has a single monogenic resistant gene to coffee rust. Coffee leaves of parents, resistant, and susceptible genotypes of the F2 generation plants were inoculated with pathogen spores. A differential analysis was performed by combined cDNA-AFLP and bulk segregant analysis (BSA) in pooled samples collected 48 and 72 h postinoculation, increasing the selectiveness for differential gene expression. Of 108 differential expressed genes, between 33,000 gene fragments analyzed, 108 differential expressed genes were identified in resistant plants. About 20 and 22 % of these resistant-correlated genes are related to signaling and defense genes, respectively. Between signaling genes, the major subclass corresponds to receptor and resistant homolog genes, like nucleotide-binding site leucine-rich repeat (NBS-LRR), Pto-like, RLKs, Bger, and RGH1A, all not previously described in coffee rust responses. The second major subclass included kinases, where two mitogen-activated kinases (MAPK) are identified. Further gene expression analysis was performed for 21 selected genes by real-time PCR gene expression analysis at 0, 12, 24, 48, and 72 h postinoculation. The expression of genes involved in signaling and defense was higher at 24 and 72 h after inoculation, respectively. The NBS-LRR was the more differentially expressed gene between the signaling genes (four times more expressed in the resistant genotype), and thraumatin (PR5) was the more expressed between all genes (six times more expressed). Multivariate analysis reinforces the significance of the temporal separation of identified signaling and defense genes: early expression of signaling genes support the hypothesis that higher expression of the signaling components up regulates the defense genes identified. Additionally the increased gene expression of these two gene sets is associated with a single monogenic resistance trait to to leaf coffee rust in the interaction characterized here. |
publishDate |
2013 |
dc.date.issued.fl_str_mv |
2013-07-09 |
dc.date.accessioned.fl_str_mv |
2018-03-27T16:45:08Z |
dc.date.available.fl_str_mv |
2018-03-27T16:45:08Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://doi.org/10.1007/s10142-013-0330-7 http://www.locus.ufv.br/handle/123456789/18533 |
dc.identifier.issn.none.fl_str_mv |
14387948 |
identifier_str_mv |
14387948 |
url |
https://doi.org/10.1007/s10142-013-0330-7 http://www.locus.ufv.br/handle/123456789/18533 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofseries.pt-BR.fl_str_mv |
v. 13, Issue 3, p. 379–389, August 2013 |
dc.rights.driver.fl_str_mv |
Springer-Verlag Berlin Heidelberg info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Springer-Verlag Berlin Heidelberg |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Functional & Integrative Genomics |
publisher.none.fl_str_mv |
Functional & Integrative Genomics |
dc.source.none.fl_str_mv |
reponame:LOCUS Repositório Institucional da UFV instname:Universidade Federal de Viçosa (UFV) instacron:UFV |
instname_str |
Universidade Federal de Viçosa (UFV) |
instacron_str |
UFV |
institution |
UFV |
reponame_str |
LOCUS Repositório Institucional da UFV |
collection |
LOCUS Repositório Institucional da UFV |
bitstream.url.fl_str_mv |
https://locus.ufv.br//bitstream/123456789/18533/1/artigo.pdf https://locus.ufv.br//bitstream/123456789/18533/2/license.txt https://locus.ufv.br//bitstream/123456789/18533/3/artigo.pdf.jpg |
bitstream.checksum.fl_str_mv |
cd97392f981eb92ca5a72c7a2b4a44ae 8a4605be74aa9ea9d79846c1fba20a33 64d2fc33f4416498eb3c98aa2fc3cfe5 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV) |
repository.mail.fl_str_mv |
fabiojreis@ufv.br |
_version_ |
1801213107123519488 |