Modelo de fragilidade gama e regressão quantílica em análise de sobrevivência de abelhas melíferas expostas à proteína Cry1Ac

Detalhes bibliográficos
Autor(a) principal: Samudio, Fanni Petrona Ruiz
Data de Publicação: 2014
Tipo de documento: Dissertação
Idioma: por
Título da fonte: LOCUS Repositório Institucional da UFV
Texto Completo: http://locus.ufv.br/handle/123456789/4077
Resumo: Bees are essential for the maintenance of biodiversity. They are also responsible for a large percentage of world food production. The species Apis mellifera is considered of great economic value due to its products for human consumption. The creation of insect-resistant transgenic products has increased the chances for the contact between bees and the Cry proteins derived from the bacterium Bacillus thuringiensis, which can be toxic to bees. Therefore, it is very important to study the hazards of toxicity. The study of these proteins in bees can be conducted by using survival analysis techniques, in which the response variable is the time until the occurrence of the event of interest, called failure time. If failure does not occur, time is called censoring, which is some partial information. The main interest is to estimate parameters to describe the survival or hazards, at a given time. In general, when there are covariates that may affect the survival time, adjustment can be performed by the Cox Regression Model, also known as proportional hazards model, through the assumption of proportional hazards among individuals over time. Chapter I, which deals with an adaptation of the Cox Regression model known as Fragility Model, not only explains the hazard of failure from individuals due to the effect of covariates, but also describes the existence of an unobserved random variable that groups individuals in natural or artificial conglomerates. The survival times were modeled to explain the hazard of failure by immature workers of A. mellifera under the effect of covariates; the colony was used as a random variable; and the ingestion of Cry1Ac protein, as fixed explanatory variable. Three different diets were tested to evaluate the toxicity of Cry1Ac on A. Mellifera: pure artificial (D0), artificial diluted in water with Cry1Ac (D2) and artificial diluted in water (D2). The individuals were collected from five different colonies maintained in Viçosa, Minas Gerais, Brazil. The random variable colony (frailty) was significant, which indicates statistical differences in the lifespans of bees from different colonies. Considering this diversity of frailty, the artificial diet diluted in water showed a higher hazard of failure, significantly different from the effect of the control diet (artificial pure). Therefore, the survival of the bee larvae was decreased due to the addition of water to the diet, which diluted the feed. However, the Cry1Ac-protein-based diet showed no significant hazard of failure when compared with the control. An alternative technique to the Cox model is presented in Chapter II of this work. When no proportional hazards of the individuals over time are observed within the sample, it is necessary to stratify or perform some other weakening of the proportional hazard condition. It can be used the Quantile Regression, which studies the relationship between the dependent variable and the explanatory variables in the conditional quantiles by minimizing the weighted mean absolute errors. This technique has properties of equivariance, invariance for monotomic transformations and robustness in the presence of outliers. Thus, by means of equivariance, they can be applied to data with censoring. It was found that, in the same set of biosafety data from the Cry1Ac protein, in honeybees called A. Mellifera, the hazards of failure by individuals are not proportionalities for the different diets studied. The survival times of bees were adjusted by quantile regression, by using the Portnoy estimator for 14 quantiles. In quantiles {0.10; 0.15; 0.30; 0.40}, the coefficients are negative values significantly different from zero. For such, in these quantiles, the individuals fed with pure diet (D0) had longer survival time compared to those fed with a diet containing Cry1Ac protein (D1). This was observed among younger individuals, since the lifespan of the larvae lifespans in these quantiles are below the average time of life. The coefficients for the quantiles {0.35; 0.50; 0.60} presented statistically significant negative effect. Therefore, water addition to the diet affected the survival of larvae approximately at the average lifespans.
id UFV_c72604d07ffa9c68e15d0c519d2cb4de
oai_identifier_str oai:locus.ufv.br:123456789/4077
network_acronym_str UFV
network_name_str LOCUS Repositório Institucional da UFV
repository_id_str 2145
spelling Samudio, Fanni Petrona Ruizhttp://lattes.cnpq.br/0695547304072125Nascimento, Moyséshttp://lattes.cnpq.br/6544887498494945Siqueira, Maria Augusta Limahttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4777253E4Martins Filho, Sebastiãohttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4723282T5Nascimento, Ana Carolina Campanahttp://lattes.cnpq.br/2348397234521519Silva, Fabyano Fonseca ehttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4766260Z22015-03-26T13:32:21Z2015-01-162015-03-26T13:32:21Z2014-02-28SAMUDIO, Fanni Petrona Ruiz. Gamma frailty model and quantile regression in the survival analysis of honeybees exposed to Cry1Ac protein.. 2014. 72 f. Dissertação (Mestrado em Estatística Aplicada e Biometria) - Universidade Federal de Viçosa, Viçosa, 2014.http://locus.ufv.br/handle/123456789/4077Bees are essential for the maintenance of biodiversity. They are also responsible for a large percentage of world food production. The species Apis mellifera is considered of great economic value due to its products for human consumption. The creation of insect-resistant transgenic products has increased the chances for the contact between bees and the Cry proteins derived from the bacterium Bacillus thuringiensis, which can be toxic to bees. Therefore, it is very important to study the hazards of toxicity. The study of these proteins in bees can be conducted by using survival analysis techniques, in which the response variable is the time until the occurrence of the event of interest, called failure time. If failure does not occur, time is called censoring, which is some partial information. The main interest is to estimate parameters to describe the survival or hazards, at a given time. In general, when there are covariates that may affect the survival time, adjustment can be performed by the Cox Regression Model, also known as proportional hazards model, through the assumption of proportional hazards among individuals over time. Chapter I, which deals with an adaptation of the Cox Regression model known as Fragility Model, not only explains the hazard of failure from individuals due to the effect of covariates, but also describes the existence of an unobserved random variable that groups individuals in natural or artificial conglomerates. The survival times were modeled to explain the hazard of failure by immature workers of A. mellifera under the effect of covariates; the colony was used as a random variable; and the ingestion of Cry1Ac protein, as fixed explanatory variable. Three different diets were tested to evaluate the toxicity of Cry1Ac on A. Mellifera: pure artificial (D0), artificial diluted in water with Cry1Ac (D2) and artificial diluted in water (D2). The individuals were collected from five different colonies maintained in Viçosa, Minas Gerais, Brazil. The random variable colony (frailty) was significant, which indicates statistical differences in the lifespans of bees from different colonies. Considering this diversity of frailty, the artificial diet diluted in water showed a higher hazard of failure, significantly different from the effect of the control diet (artificial pure). Therefore, the survival of the bee larvae was decreased due to the addition of water to the diet, which diluted the feed. However, the Cry1Ac-protein-based diet showed no significant hazard of failure when compared with the control. An alternative technique to the Cox model is presented in Chapter II of this work. When no proportional hazards of the individuals over time are observed within the sample, it is necessary to stratify or perform some other weakening of the proportional hazard condition. It can be used the Quantile Regression, which studies the relationship between the dependent variable and the explanatory variables in the conditional quantiles by minimizing the weighted mean absolute errors. This technique has properties of equivariance, invariance for monotomic transformations and robustness in the presence of outliers. Thus, by means of equivariance, they can be applied to data with censoring. It was found that, in the same set of biosafety data from the Cry1Ac protein, in honeybees called A. Mellifera, the hazards of failure by individuals are not proportionalities for the different diets studied. The survival times of bees were adjusted by quantile regression, by using the Portnoy estimator for 14 quantiles. In quantiles {0.10; 0.15; 0.30; 0.40}, the coefficients are negative values significantly different from zero. For such, in these quantiles, the individuals fed with pure diet (D0) had longer survival time compared to those fed with a diet containing Cry1Ac protein (D1). This was observed among younger individuals, since the lifespan of the larvae lifespans in these quantiles are below the average time of life. The coefficients for the quantiles {0.35; 0.50; 0.60} presented statistically significant negative effect. Therefore, water addition to the diet affected the survival of larvae approximately at the average lifespans.As abelhas são seres indispensáveis para a manutenção da biodiversidade e além disso, são responsáveis por grande porcentagem da produção mundial de alimentos. A Apis mellifera é considerada espécie de grande valor econômico, devido a seus produtos para o consumo humano. Atualmente, com a criação de transgênicos resistentes a insetos, aumentou a possibilidade das abelhas entrarem em contato com as proteínas Cry derivada da bactéria Bacillus thuringiensis, que pode ser toxica às abelhas, tornando o estudo dos riscos de toxicidade importante. Portanto, o estudo dessas proteínas nas abelhas pode ser realizada por meio das técnicas da análise de sobrevivência. Nestas técnicas a variável resposta é o tempo até a ocorrência do evento de interesse, denominado tempo de falha, e se a falha não ocorrer, o tempo é denominado censura, que é uma informação parcial. O principal interesse é estimar parâmetros para descrever a sobrevivência ou riscos, num certo tempo determinado. Usualmente quando existem covariáveis que possam influir no tempo de sobrevivência o ajuste pode ser realizado pelo Modelo Regressão de Cox, também conhecido como de modelo de riscos proporcionais, pela suposição dos riscos proporcionais entre os indivíduos ao longo do tempo. No Capítulo I deste trabalho é realizada uma adaptação da Regressão de Cox conhecida como Modelo de Fragilidade, que além de explicar o risco do indivíduo falhar por influência de covariáveis, também descreve a existência de alguma variável aleatória não observada que agrupa indivíduos em conglomerados naturais ou artificiais. Os tempos de sobrevivência foram modelados para explicar o risco de falhar das operárias imaturas de A. mellifera sob o efeito de covariáveis, sendo a colônia utilizada como variável aleatória e a ingestão da proteína Cry1Ac como variável explicativa fixa. Para avaliar a toxicidade de Cry1Ac sobre A. mellifera, foram testadas três diferentes dietas: artificial pura (D0), artificial diluída em água com Cry1Ac (D2) e artificial diluída em água (D2). Os indivíduos foram coletados de cinco colônias diferentes mantidas em Viçosa, Minas Gerais, Brasil. A variável aleatória colônia (fragilidade) foi significativa, indicando diferenças estatísticas nos tempos de vida das abelhas provenientes de diferentes colônias. Dentro dessa diversidade de fragilidade, a dieta artificial diluída em água apresentou risco maior de falhar, significativamente diferente do efeito da dieta controle (artificial pura). Portanto, a sobrevivência das larvas de abelhas foi diminuída em virtude da adição de água na dieta, pela diluição do alimento. No entanto, a dieta baseada na proteína Cry1Ac não mostrou risco de falha significativo quando comparado com o controle. Uma técnica alternativa ao Modelo de Cox é apresentada no Capítulo II deste trabalho. Quando se verifica que os riscos dos indivíduos, ao longo do tempo dentro da amostra, não são proporcionais, é necessário estratificar ou realizar um outro procedimento na análise. Uma alternativa que pode ser utilizada é a Regressão Quantílica, que estuda a relação entre a variável dependente e as variáveis explicativas nos quantis condicionais, por meio da minimização de erros absolutos ponderados. Esta técnica possui propriedades de equivariância, invariância para transformações monotômicas e robustez na presença de outlier. Assim, pela equivariância podem ser aplicados aos dados com censura. Foi verificado que no mesmo conjunto de dados de biossegurança da proteína Cry1Ac em abelhas denominadas A. mellifera que os riscos de falhar dos indivíduos não são proporcionalidades para as diferentes dietas estudadas. Os tempos de sobrevivência das abelhas foram ajustados pela regressão quantílica, utilizando o estimador de Portnoy para 14 quantis. Nos quantis {0,10; 0,15; 0,30; 0,40} os coeficientes são valores negativos significativamente diferentes de zero. Por tanto, nestes quantis os indivíduos alimentados com a dieta pura (D0) tiveram maior tempo de sobrevivência, que aqueles que têm incorporado à proteína Cry1Ac na dieta (D1), isto aconteceu entre os indivíduos mais novos, já que nesses quantis os tempos de vida das larvas são inferiores ao tempo de vida mediano. Os coeficientes para os quantis {0,35; 0,50;0,60} apresentaram efeito negativo estatisticamente significativos, por tanto a incorporação da água na dieta influiu na sobrevivência das larvas aproximadamente nos tempos medianos de vida.Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorapplication/pdfporUniversidade Federal de ViçosaMestrado em Estatística Aplicada e BiometriaUFVBREstatística Aplicada e BiometriaAbelha - CriaçãoAbelhas melíferasApis melliferaProteína Cry 1AcBee - CreationHoneybeesApis melliferaCry 1AC proteinCNPQ::CIENCIAS AGRARIASModelo de fragilidade gama e regressão quantílica em análise de sobrevivência de abelhas melíferas expostas à proteína Cry1AcGamma frailty model and quantile regression in the survival analysis of honeybees exposed to Cry1Ac protein.info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALtexto completo.pdfapplication/pdf540797https://locus.ufv.br//bitstream/123456789/4077/1/texto%20completo.pdf8f31a791537c94182ffb7cf0199e9e42MD51TEXTtexto completo.pdf.txttexto completo.pdf.txtExtracted texttext/plain115317https://locus.ufv.br//bitstream/123456789/4077/2/texto%20completo.pdf.txt1d6461aaa786f6aeb941707288219bf7MD52THUMBNAILtexto completo.pdf.jpgtexto completo.pdf.jpgIM Thumbnailimage/jpeg3648https://locus.ufv.br//bitstream/123456789/4077/3/texto%20completo.pdf.jpg901289356d3439ac5e4bd2c8f6324340MD53123456789/40772016-04-09 23:18:25.747oai:locus.ufv.br:123456789/4077Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452016-04-10T02:18:25LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false
dc.title.por.fl_str_mv Modelo de fragilidade gama e regressão quantílica em análise de sobrevivência de abelhas melíferas expostas à proteína Cry1Ac
dc.title.alternative.eng.fl_str_mv Gamma frailty model and quantile regression in the survival analysis of honeybees exposed to Cry1Ac protein.
title Modelo de fragilidade gama e regressão quantílica em análise de sobrevivência de abelhas melíferas expostas à proteína Cry1Ac
spellingShingle Modelo de fragilidade gama e regressão quantílica em análise de sobrevivência de abelhas melíferas expostas à proteína Cry1Ac
Samudio, Fanni Petrona Ruiz
Abelha - Criação
Abelhas melíferas
Apis mellifera
Proteína Cry 1Ac
Bee - Creation
Honeybees
Apis mellifera
Cry 1AC protein
CNPQ::CIENCIAS AGRARIAS
title_short Modelo de fragilidade gama e regressão quantílica em análise de sobrevivência de abelhas melíferas expostas à proteína Cry1Ac
title_full Modelo de fragilidade gama e regressão quantílica em análise de sobrevivência de abelhas melíferas expostas à proteína Cry1Ac
title_fullStr Modelo de fragilidade gama e regressão quantílica em análise de sobrevivência de abelhas melíferas expostas à proteína Cry1Ac
title_full_unstemmed Modelo de fragilidade gama e regressão quantílica em análise de sobrevivência de abelhas melíferas expostas à proteína Cry1Ac
title_sort Modelo de fragilidade gama e regressão quantílica em análise de sobrevivência de abelhas melíferas expostas à proteína Cry1Ac
author Samudio, Fanni Petrona Ruiz
author_facet Samudio, Fanni Petrona Ruiz
author_role author
dc.contributor.authorLattes.por.fl_str_mv http://lattes.cnpq.br/0695547304072125
dc.contributor.author.fl_str_mv Samudio, Fanni Petrona Ruiz
dc.contributor.advisor-co1.fl_str_mv Nascimento, Moysés
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/6544887498494945
dc.contributor.advisor-co2.fl_str_mv Siqueira, Maria Augusta Lima
dc.contributor.advisor-co2Lattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4777253E4
dc.contributor.advisor1.fl_str_mv Martins Filho, Sebastião
dc.contributor.advisor1Lattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4723282T5
dc.contributor.referee1.fl_str_mv Nascimento, Ana Carolina Campana
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/2348397234521519
dc.contributor.referee2.fl_str_mv Silva, Fabyano Fonseca e
dc.contributor.referee2Lattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4766260Z2
contributor_str_mv Nascimento, Moysés
Siqueira, Maria Augusta Lima
Martins Filho, Sebastião
Nascimento, Ana Carolina Campana
Silva, Fabyano Fonseca e
dc.subject.por.fl_str_mv Abelha - Criação
Abelhas melíferas
Apis mellifera
Proteína Cry 1Ac
topic Abelha - Criação
Abelhas melíferas
Apis mellifera
Proteína Cry 1Ac
Bee - Creation
Honeybees
Apis mellifera
Cry 1AC protein
CNPQ::CIENCIAS AGRARIAS
dc.subject.eng.fl_str_mv Bee - Creation
Honeybees
Apis mellifera
Cry 1AC protein
dc.subject.cnpq.fl_str_mv CNPQ::CIENCIAS AGRARIAS
description Bees are essential for the maintenance of biodiversity. They are also responsible for a large percentage of world food production. The species Apis mellifera is considered of great economic value due to its products for human consumption. The creation of insect-resistant transgenic products has increased the chances for the contact between bees and the Cry proteins derived from the bacterium Bacillus thuringiensis, which can be toxic to bees. Therefore, it is very important to study the hazards of toxicity. The study of these proteins in bees can be conducted by using survival analysis techniques, in which the response variable is the time until the occurrence of the event of interest, called failure time. If failure does not occur, time is called censoring, which is some partial information. The main interest is to estimate parameters to describe the survival or hazards, at a given time. In general, when there are covariates that may affect the survival time, adjustment can be performed by the Cox Regression Model, also known as proportional hazards model, through the assumption of proportional hazards among individuals over time. Chapter I, which deals with an adaptation of the Cox Regression model known as Fragility Model, not only explains the hazard of failure from individuals due to the effect of covariates, but also describes the existence of an unobserved random variable that groups individuals in natural or artificial conglomerates. The survival times were modeled to explain the hazard of failure by immature workers of A. mellifera under the effect of covariates; the colony was used as a random variable; and the ingestion of Cry1Ac protein, as fixed explanatory variable. Three different diets were tested to evaluate the toxicity of Cry1Ac on A. Mellifera: pure artificial (D0), artificial diluted in water with Cry1Ac (D2) and artificial diluted in water (D2). The individuals were collected from five different colonies maintained in Viçosa, Minas Gerais, Brazil. The random variable colony (frailty) was significant, which indicates statistical differences in the lifespans of bees from different colonies. Considering this diversity of frailty, the artificial diet diluted in water showed a higher hazard of failure, significantly different from the effect of the control diet (artificial pure). Therefore, the survival of the bee larvae was decreased due to the addition of water to the diet, which diluted the feed. However, the Cry1Ac-protein-based diet showed no significant hazard of failure when compared with the control. An alternative technique to the Cox model is presented in Chapter II of this work. When no proportional hazards of the individuals over time are observed within the sample, it is necessary to stratify or perform some other weakening of the proportional hazard condition. It can be used the Quantile Regression, which studies the relationship between the dependent variable and the explanatory variables in the conditional quantiles by minimizing the weighted mean absolute errors. This technique has properties of equivariance, invariance for monotomic transformations and robustness in the presence of outliers. Thus, by means of equivariance, they can be applied to data with censoring. It was found that, in the same set of biosafety data from the Cry1Ac protein, in honeybees called A. Mellifera, the hazards of failure by individuals are not proportionalities for the different diets studied. The survival times of bees were adjusted by quantile regression, by using the Portnoy estimator for 14 quantiles. In quantiles {0.10; 0.15; 0.30; 0.40}, the coefficients are negative values significantly different from zero. For such, in these quantiles, the individuals fed with pure diet (D0) had longer survival time compared to those fed with a diet containing Cry1Ac protein (D1). This was observed among younger individuals, since the lifespan of the larvae lifespans in these quantiles are below the average time of life. The coefficients for the quantiles {0.35; 0.50; 0.60} presented statistically significant negative effect. Therefore, water addition to the diet affected the survival of larvae approximately at the average lifespans.
publishDate 2014
dc.date.issued.fl_str_mv 2014-02-28
dc.date.accessioned.fl_str_mv 2015-03-26T13:32:21Z
dc.date.available.fl_str_mv 2015-01-16
2015-03-26T13:32:21Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv SAMUDIO, Fanni Petrona Ruiz. Gamma frailty model and quantile regression in the survival analysis of honeybees exposed to Cry1Ac protein.. 2014. 72 f. Dissertação (Mestrado em Estatística Aplicada e Biometria) - Universidade Federal de Viçosa, Viçosa, 2014.
dc.identifier.uri.fl_str_mv http://locus.ufv.br/handle/123456789/4077
identifier_str_mv SAMUDIO, Fanni Petrona Ruiz. Gamma frailty model and quantile regression in the survival analysis of honeybees exposed to Cry1Ac protein.. 2014. 72 f. Dissertação (Mestrado em Estatística Aplicada e Biometria) - Universidade Federal de Viçosa, Viçosa, 2014.
url http://locus.ufv.br/handle/123456789/4077
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Viçosa
dc.publisher.program.fl_str_mv Mestrado em Estatística Aplicada e Biometria
dc.publisher.initials.fl_str_mv UFV
dc.publisher.country.fl_str_mv BR
dc.publisher.department.fl_str_mv Estatística Aplicada e Biometria
publisher.none.fl_str_mv Universidade Federal de Viçosa
dc.source.none.fl_str_mv reponame:LOCUS Repositório Institucional da UFV
instname:Universidade Federal de Viçosa (UFV)
instacron:UFV
instname_str Universidade Federal de Viçosa (UFV)
instacron_str UFV
institution UFV
reponame_str LOCUS Repositório Institucional da UFV
collection LOCUS Repositório Institucional da UFV
bitstream.url.fl_str_mv https://locus.ufv.br//bitstream/123456789/4077/1/texto%20completo.pdf
https://locus.ufv.br//bitstream/123456789/4077/2/texto%20completo.pdf.txt
https://locus.ufv.br//bitstream/123456789/4077/3/texto%20completo.pdf.jpg
bitstream.checksum.fl_str_mv 8f31a791537c94182ffb7cf0199e9e42
1d6461aaa786f6aeb941707288219bf7
901289356d3439ac5e4bd2c8f6324340
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)
repository.mail.fl_str_mv fabiojreis@ufv.br
_version_ 1801213129292513280